Browse > Article
http://dx.doi.org/10.4283/JMAG.2011.16.1.027

Synthesis and Magnetic Properties of Nano-sized Mn Ferrite Powder and Film  

Kwon, Woo-Hyun (Department of Applied Physics, Konkuk University)
Lee, Jae-Gwang (Department of Applied Physics, Konkuk University)
Lee, Young-Bae (Department of Physics, Hanzhong University)
Chae, Kwang-Pyo (Department of Applied Physics, Konkuk University)
Publication Information
Abstract
Nano-sized manganese ferrite powders and films, $MnFe_2O_4$, were fabricated by the sol-gel method, and the effects of annealing temperature on the crystallographic and magnetic properties were studied by using X-ray diffractometry, field emission scanning electron microscopy, M$\"{o}$ssbauer spectroscopy, and vibrating sample magnetometry. X-ray diffraction spectroscopy of powder samples annealed above 523 K indicated the presence of spinel structure, and the film samples annealed above 773 K also had spinel structure. The particle size increased with the annealing temperature. For the powder samples, the Mossbauer spectra annealed above 573 K could be fitted as the superposition of two Zeeman sextets due to the tetrahedral and octahedral sites of $Fe^{3+}$ ions. Using the M$\"{o}$ssbauer subspectrum area ratio the cation distribution could be written as ($Mn_{0.52}Fe_{0.48}$) $[Mn_{0.48}Fe_{1.52}]$ $O_4$. However the spectrum annealed at 523 K only showed as a doublet due to a superparamagnetic phase. As the annealing temperature was increased, the saturation magnetization and the corecivity of the powder samples increased, as did the coercivity of film samples.
Keywords
Mn ferrite; sol-gel method; M$\"{o}$ssbauer spectroscopy; coercivity; saturation magnetization;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 M. H. Mahmoud, Solid State Ionics 176, 1333 (2005).   DOI   ScienceOn
2 K. Oda, T. Yoshio, K. hirata, K. O. Oka, and K. Takabashi, J. Jpn. Soc. Powder: Powder Metall. 29, 170 (1982).   DOI
3 K. P. Chae, J. G. Lee, W. K. Kim, and Y. B. Lee, J. Magn. Magn. Mater. 248, 236 (2002).   DOI   ScienceOn
4 K. G. Brooks and V. R. W. Amarakoon, J. Am. Ceram. Soc. 53, 3965 (1998).
5 S. W. Lee, J. K. Lee, K. P. Chae, W. H, Kwon, and C. S. Lee, J. Kor. Mag. Soc. (in Korean) 19, 57 (2009).   DOI   ScienceOn
6 B. D. Cullity, Elements of X-Ray Diffraction, Addison-Wesley Co. Readings, MA (1978) p.102.
7 W. H. Kwon, Ph. D. Thesis, Konkuk University (2010) p.79.
8 R. K. Datta and B. Roy, J. Am. Ceram. Soc. 50, 578 (1967).   DOI
9 N. Yamamoto, S. Kawano, N. Achwa, M. Kiyama, and T. Takada, Japan. J. Appl. Phys. 12, 1830 (1973).   DOI
10 A. S. Albuquerque, J. D. Ardisson, and W. A. A. Macedo, J. Appl. Phys. 87, 4352 (2000).   DOI   ScienceOn
11 M. K. Shobana, S. Sanka, and V. Rajendran, Mater. Chem. Phys. 113, 10 (2009).   DOI   ScienceOn
12 N. N. Greenwood and T. C. Gibb, Mossbauer spectroscopy, Chapman and Hall Ltd. London, (1971) p.265.
13 A. H. Qureshi, J. Cryst. Growth 286, 365 (2006).   DOI   ScienceOn
14 J. Nie, H. Li, Z. Feng, and H. He, J. Magn. Magn. Mater. 265, 172 (2003).   DOI   ScienceOn