• Title/Summary/Keyword: potato plant

Search Result 915, Processing Time 0.043 seconds

Studies on storage of potato chip variefies on spring crop (춘작 재배시 Chip 가공용 감자 품종에 따른 저장성 연구)

  • Kim, Kyung-Je;Lee, Eun-Sang
    • Korean Journal of Organic Agriculture
    • /
    • v.10 no.4
    • /
    • pp.69-78
    • /
    • 2002
  • This experiment was conducted to investigate the changes of sugar contents and chip color during 104days storage after harvesting of five potato varieties. The potato varieties were planted on 1st April in 1999 and harvested on 10. July in 1999. $No_2$ contents in potato petiole tended to decrease repidly at tuber maturing stage. $K^+$ contents in potato petiole tended to in crease at 70 days ofter planting on medium maturing varieties, and at 90 days after planting on late maturing variety. Snowden variety was no desirable cultivar for processing on spring cultivation due to long growth period. Contents of solid and sugar in potatoes affected on potato chip color. Higher contents of solid in potato varieties showed low sugar contents and no change on chip color during storage.

  • PDF

Biological Control of Soilborne Diseases on Tomato, Potato and Black Pepper by Selected PGPR in the Greenhouse and Field in Vietnam

  • Thanh, D.T.;Tarn, L.T.T.;Hanh, N.T.;Tuyen, N.H.;Srinivasan, Bharathkumar;Lee, Sang-Yeob;Park, Kyung-Seok
    • The Plant Pathology Journal
    • /
    • v.25 no.3
    • /
    • pp.263-269
    • /
    • 2009
  • Bacterial wilt, Fusarium wilt and Foot rot caused by Ralstonia solanacearum, Fusarium oxysporum, and Phytophthora capsici respectively, continue to be severe problems to tomato, potato and black pepper growers in Vietnam. Three bio-products, Bacillus vallismortis EXTN-1 (EXTN-1), Bacillus sp. and Paenibacillus sp. (ESSC) and Bacillus substilis (MFMF) were examined in greenhouse bioassay for the ability to reduce bacterial wilt, fusarium wilt and foot rot disease severity. While these bio-products significantly reduced disease severities, EXTN-1 was the most effective, providing a mean level of disease reduction 80.0 to 90.0% against bacterial wilt, fusarium wilt and foot rot diseases under greenhouse conditions. ESSC and MFMF also significantly reduced fusarium wilt, bacterial wilt and foot rot severity under greenhouse conditions. Bio-product, EXTN-1 with the greatest efficacy under greenhouse condition was tested for the ability to reduce bacterial wilt, fusarium wilt and foot rot under field condition at Song Phuong and Thuong Tin locations in Ha Tay province, Vietnam. Under field condition, EXTN-1 provided a mean level of disease reduction more than 45.0% against all three diseases compared to water treated control. Besides, EXTN-1 treatment increased the yield in tomato fruits 17.3% than water treated control plants.

Enhanced Tolerance to Oxidative Stress of Transgenic Potato (cv. Superior) Plants Expressing Both SOD and APX in Chloroplasts (SOD와 APX를 동시에 엽록체에 발현시킨 형질전환 감자 (cv. Superior)의 산화스트레스 내성 증가)

  • Tang, Li;Kwon, Suk-Yoon;Kim, Myoung-Duck;Kim, Jin-Seog;Kwak, Sang-Soo;Lee, Haeng-Soon
    • Journal of Plant Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.299-305
    • /
    • 2007
  • Oxidative stress is a major damaging factor for plants exposed to environmental stresses. Previously, we have generated transgenic potato (cv. Superior) plants expressing both CuZnSOD and APX genes in chloroplast under the control of an oxidative stress-inducible SWPA2 promoter (referred to as SSA plants) and selected the transgenic potato plant lines with tolerance against methyl viologen (MV)-mediated oxidative stress. When leaf discs of SSA plants were subjected to $3{\mu}M$ methyl viologen (MV), they showed approximately 40% less damage than non-transgenic (NT) plants. SSA plantlets were treated with $0.3{\mu}M$ MV stress, SSA plants also exhibited reduced damage in root growth. When 350 MV was sprayed onto the whole plants, SSA plants showed a significant reduction in visible damage, which was approximately 75% less damage than leaves of NT plants. These plants will be used for further analysis of tolerance to environmental stresses, such as high temperature and salt stress. These results suggest that transgenic potato (cv. Superior) plants would be a useful plant crop for commercial cultivation under unfavorable growth conditions.

Cloning of Coat Protein Gene from Korean Isolate Potato Leafroll Virus (PLRV) and Introduction into Potato (Solanum tuberosum) (한국 분리주 감자 잎말림 바이러스 (PLRV) 외피 단백질 유전자의 클로닝 및 감자 내 도입)

  • Seo Hyo-Won;Yi Jung-Yoon;Park Young-Eun;Cho Ji-Hong;Hahm Young-Il;Cho Hyun-Mook
    • Journal of Plant Biotechnology
    • /
    • v.32 no.4
    • /
    • pp.243-250
    • /
    • 2005
  • The coat protein gene (AF296280) of the Korean isolate Potato leafroll virus (PLRV) was cloned and the open reading frame (627 bp) was transformed into potato (Solanum tuberosum cv. Superior). Out of seventeen individual transgenic lines, five lines were identified to confer resistance to PLRV through the five generation's selection program in the greenhouse as well as isolated trial field. Successful introduction and genetic stability of coat protein gene in the genome of potato were confirmed by polymerase chain reaction (PCR), Southern blot hybridization and northern blot hybridization. Some of the transgenic lines were highly resistant to PLRV but did not show any resistance to less homologous Potato virus Y (PVY). Our results suggest that the resistance to PLRV is due to homology dependent gene silencing by sense strand coat protein gene. In addition, the results of field test through five generations showed that there were no significant differences comparing to nontransgenic potatoes in the morphological aspect of shoot as well as tuber, Ho remarkable differences were also observed in the major agronomic characters and yields except for the resistance to PLRV.

Simple and Rapid Detection of Potato leafroll virus by Reverse Transcription Loop-mediated Isothermal Amplification

  • Ju, Ho-Jong
    • The Plant Pathology Journal
    • /
    • v.27 no.4
    • /
    • pp.385-389
    • /
    • 2011
  • A new reverse transcription loop-mediated isothermal amplification (RT-LAMP) method for the Potato leafroll virus (PLRV) was developed and compared with conventional reverse transcription polymerase chain reaction (RT-PCR) to address its advantages over RTPCR. RT-LAMP primers were designed from the open reading frame 3 (ORF3) sequence of PLRV. The RT-LAMP reactions were conducted without or with a set of loop primers. By real-time monitoring using Turbimeter, the RT-LAMP (with loop primers) detects PLRV in less than 30 min, compared to 120 min of RT-PCR. By adding fluorescent reagent during the reaction, final products of the RT-LAMP were fluorescently visualized under UV light or could be differentiated by naked-eye inspection under normal light. The RT-LAMP was extremely sensitive, about 2000-fold more sensitive than RT-PCR. This study presents great potential of the RT-LAMP for diagnosis and PLRV epidemiology because RT-LAMP method is speedy, sensitive, inexpensive, and convenient.