Browse > Article
http://dx.doi.org/10.5423/PPJ.2009.25.3.263

Biological Control of Soilborne Diseases on Tomato, Potato and Black Pepper by Selected PGPR in the Greenhouse and Field in Vietnam  

Thanh, D.T. (Plant Pathology Division, Plant Protection Research Institute (PPRI))
Tarn, L.T.T. (Plant Pathology Division, Plant Protection Research Institute (PPRI))
Hanh, N.T. (Plant Pathology Division, Plant Protection Research Institute (PPRI))
Tuyen, N.H. (Plant Pathology Division, Plant Protection Research Institute (PPRI))
Srinivasan, Bharathkumar (Microbial Resources Lab., Department of Agricultural Microbiology, National Academy of Agricultural Science, RDA)
Lee, Sang-Yeob (Microbial Resources Lab., Department of Agricultural Microbiology, National Academy of Agricultural Science, RDA)
Park, Kyung-Seok (Microbial Resources Lab., Department of Agricultural Microbiology, National Academy of Agricultural Science, RDA)
Publication Information
The Plant Pathology Journal / v.25, no.3, 2009 , pp. 263-269 More about this Journal
Abstract
Bacterial wilt, Fusarium wilt and Foot rot caused by Ralstonia solanacearum, Fusarium oxysporum, and Phytophthora capsici respectively, continue to be severe problems to tomato, potato and black pepper growers in Vietnam. Three bio-products, Bacillus vallismortis EXTN-1 (EXTN-1), Bacillus sp. and Paenibacillus sp. (ESSC) and Bacillus substilis (MFMF) were examined in greenhouse bioassay for the ability to reduce bacterial wilt, fusarium wilt and foot rot disease severity. While these bio-products significantly reduced disease severities, EXTN-1 was the most effective, providing a mean level of disease reduction 80.0 to 90.0% against bacterial wilt, fusarium wilt and foot rot diseases under greenhouse conditions. ESSC and MFMF also significantly reduced fusarium wilt, bacterial wilt and foot rot severity under greenhouse conditions. Bio-product, EXTN-1 with the greatest efficacy under greenhouse condition was tested for the ability to reduce bacterial wilt, fusarium wilt and foot rot under field condition at Song Phuong and Thuong Tin locations in Ha Tay province, Vietnam. Under field condition, EXTN-1 provided a mean level of disease reduction more than 45.0% against all three diseases compared to water treated control. Besides, EXTN-1 treatment increased the yield in tomato fruits 17.3% than water treated control plants.
Keywords
biological control; bacterial wilt; fusarium wilt; EXTN-1; PGPR-mediated ISR and tomato; foot rot;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Bar-Ness, E., Hadar, Y., Chen, Y., Romheld, V. and Marschner, H. 1992. Short tenn effects ofrhizosphere microorganisms on Fe uptake from microbial siderophores by maize and oat. Plant Physiol. 100:451-456   DOI   ScienceOn
2 de Boer, M., Bom, P., Kindt, F., Keurentjes, J. J. B., van der Sluis, I., van Loon, L. C. and Bakker, P. A. H. M. 2003. Control of Fusarium wilt of radish by combining Pseudomonas putida strains that have different disease-suppressive mechanisms. Phytopathology 93:626-632   DOI   ScienceOn
3 Jubina, P. A. and Girija, V. K. 1998. Antagonistic rhizobacteria for management of Phytophthora capsici, the incitant of foot rot of black pepper. J. Mycol. Plant Pathol. 28:147-153
4 Kloepper, J. W., Ryu, C. M. and Zhang, S. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology. 94:1259-1266   DOI   ScienceOn
5 Nguyen, V. T., Liew, C. Y. F. and Burgess, L. W. 2006. Mating types of Phytophthora capsici Leonian, the causal fimgus of quick wilt of black pepper. Vietnam J. Plant Prot. 3:14-18
6 Park, K. S., Paul, D., Ryu, K. R., Kim, E. Y. and Kim, Y. K. 2006b. Bacillus vallismortis strain EXTN-1 mediated systemic resistance against Potato Virus X and Y (PYX & PVY) in the field. Plant Pathology J. 22:360-363   DOI   ScienceOn
7 Park, K., Diby, P., Kim, Y. K., Nam, K. W., Lee, Y. K., Chui, H. W. and Lee, S. Y. 2007. Induced systemic resistance by Bacillus vallismortis EXTN-1 suppressed bacterial wilt in tomato caused by Ralstonia solanacearum. Plant Pathol. J. 23:22-25   DOI   ScienceOn
8 Richardson, A. E. 2001. Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust. J. Plant Physiol. 28:897-906   DOI
9 SAS Institute. 1995. JMP Statistics and Graphics Guide. Version 3. Pp. 65-95. Cary, NC
10 Ton, N. T. 2005. Nghien cuu Cac giai Phap cong nghe Vat hi truong de phat trine vung ho tieu nguyen lieu Phuc Vu Che bien Va xuat Khuan. Bo Khoa Hoc va Cong Nghe, Vien Khoa Hoc Mien Nam, 121 Nguyen Binh Khiem-Thanh Pho Ho Chi Minh, 267p.
11 Truong, N. V., Burgess, L. W. and Liew, E. C. Y. 2008. Prevalence and etiology of Phytophthora foot rot of black pepper in Vietnam. Aust. Plant Pathol. 37:431-442   DOI   ScienceOn
12 Park, K. S., Paul, D. and Ye, W. H. 2006a. Bacillus vallismortis EXTN-1 mediated growth promotion and disease suppression in rice COryza sativa L.). Plant Pathology J. 22:278-282   DOI   ScienceOn
13 Kloepper, J. W., Hume, D. J., Scher, F. M., Singleton, C., Tipping, B., Lalibert, M., Frauley, K., Kutchaw, T., Simonson, C., Lifshitz, R., Zaleska, I. and Lee, L. 1988. Plant growth-promoting rhizobacteria on canola (rapeseed). Plant Dis. 72:42-45   DOI
14 Malhotra, S. K. and Vashistha, R. N. 1993. Genetics of resistance to Fusarium wilt race 1 in current tomato (Lycopersicon pimpinellifolium). Indian J. Agri. Sci. 63:246-347
15 Nguyen, V. T. 2002. Initial diagnosis and identification on the foot rot disease of black pepper in Vietnam. Paper presented at 1st National Conference on Plant pathology and Molecular Biology, Agriculture-Forestry University of Ho Chi Minh City
16 Schell, M. A. 2000. Control of virulence and pathogenicity genes of Ralstonia solanacearum by an elaborate sensory network. Annu. Rev. Phytopathol. 38:263-92   DOI   PUBMED   ScienceOn
17 Guo, J. H., Qi, H. Y., Guo, Y. H., Ge, H. L., Gong, L. Y., Zhang, L. X. and Sun, P. H. 2004. Biocontrol of tomato wilt by plant growth promoting rhizobacteria. Biol. Control 29:66-72   DOI   ScienceOn
18 Kloepper, J. W., Leong, J, Teintze, M. and Schroth, M. N. 1980. Enhanced plant growth by siderophores produced by plant growth promoting rhizobacteria. Nature 286:885-886   DOI
19 Park, K. S., Ahn, I. P. and Kim, C. H. 2001. Systemic resistance and expression of the pathogenesis-related genes mediated by the plant growth-promoting rhizobacterium Bacillus amyloliquejaciens EXTN-1 against anthracnose disease in cucumber. Mycobiology 29:48-53
20 Jinnah, M. A., Khalequzzaman, K. M., Islam, M. S., Siddique, M. A. K. S. and Ashrafuzzaman, M. 2002. Control of bacterial wilt of tomato by Pseudomonas fluorescens in the fIeld. Pakistan J. Sci. 5:1167-1169   DOI
21 Timmusk, S., Nicander, B., Granhall, U. and Tillberg, E. 1999. Cytokinin production by Paenibacillus polymyxa. Soil Biol. Biochem. 31:1847-1852   DOI   ScienceOn
22 Ciampi-Panno, L., Fernandez, C., Bustamante, P., Andrade, N., Ojeda, S. and Contreras, A. 1989. Biological control of bacterial wilt of potatoes caused by Pseudomonas solanacearum. Am. Potato J. 66:315-332   DOI
23 Glick, B. R., Liu, C., Ghosh, S. and Dumbroff, E. B. 1997. Early development of canola seedlings in the presence of the plant growth promoting rhizobacterium Pseudomonas putida GR 12-2. Soil BioI. Biochem. 29:1233-1239   DOI   ScienceOn
24 Doan, T. T. and Nguyen, T. H. 2006. Status of research on biological control of tomato and groundnut bacterial wilt in Vietnam. Biocontrol of bacterial plant diseases, Ist symposium. Mitt. Biol. Bundesanst. Land-Forstwirtschaft Berlin-Dahlem, 408
25 Whipps, J. M. 1997. Developments in biological control of soil borne plant pathogens. Adv. Bot. Res. 26:1-134   DOI
26 Ahn, I. P., Park, K. S. and Kim, C. H. 2002. Rhizobacteriainduced resistance perturbs viral disease progress and triggers defense-related gene expression. Mol. Cells 13:302-308   PUBMED
27 Kim, Y. C., Jung, H., Kim, K. Y. and Park, S. K. 2008. An effective biocontrol biofonnulation against Phytophthora blight of pepper using growth mixtures of combined chitinolytic bacteria under different fIeld conditions. Eur. J. Plant Pathol. 120:373-382   DOI   ScienceOn
28 Weller, D. M. 1988. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu. Rev. Phytopathol. 26:379-407   DOI   ScienceOn
29 Raupach, G. S. and Kloepper, J. W. 1998. Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology 88:1158-1164   DOI   ScienceOn
30 Hayward, A. C. 1991. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu. Rev. Phytopathology. 29:65-87   DOI   PUBMED   ScienceOn
31 French, E. R. and Sequeira, L. 1970. Strains of Pseudomonas solanacearum from Central and South America: a comparative study. Phytopathology 60:506-512   DOI
32 Larkin, R. P. and Fravel, D. R. 1998. Efficacy of various fungal and bacterial biocontrol organisms for control of fusarium wilt of tomato. Plant Dis. 82:1022-1028   DOI   ScienceOn
33 Hide, G. A., Read, P. J. and Hall, S. M. 1992. Resistance to thiabendazole in Fusarium species isolated from potato tubers affected with dry rot. Plant Pathology 41:745-748   DOI
34 Lemessa, F. and Zeller, W. 2007. Screening rhizobacteria for biological control of Ralstonia solanacearum in Ethiopia. Biol. Control. 42:336-344   DOI   ScienceOn
35 McGrath, D. J., Gillespie, D. and Vawdrey, L. 1987. Inheritance of resistance to Fusarium oxysporum f.sp. lycopersic race 2 and race 3 in L. pennellii. Aust. J Agric. Res. 38:729-733   DOI
36 Vidhyasekaran, P., Sethuraman, K., Rajappan, K. and Vasumathi, K. 1997. Powder fonnulations of Pseudomonas fluorescens to control pigeonpea wilt. BioI. Control 8: 166-171   DOI   ScienceOn
37 Dreath, A. and Sendall, B. 2004. Economic impact of Phytophthora disease in Southeast Asia. Dreath, A. and Guest, D. I., ed. 2004. Diversity and management of Phytophthora in Southeast Asia. ACIAR Monograph No. 114, 238p:10-28
38 Chanway, C. P., Hynes, R. K. and Nelson, L. M. 1989. Plant growthpromoting rhizobacteria: Effects on growth and nitrogen fIxation of lentils and pea. Soil BioI. Biochem. 21:511-517   DOI   ScienceOn
39 Violante, H. G. M. and Portugal, V. O. 2007. Alteration of tomato fruit quality by root inoculation with plant growth-promoting rhizobacteria (PGPR): Bacillus subtilis BEB-13bs Sci. Hort. 113:103-106   DOI   ScienceOn
40 Domenech, J., Reddy, M. S., Kloepper, J. W., Ramos, B. and Manero, J.G. 2006. Combined application of the biological product LS213 with Bacillus, Pseudomonas or Chryseobacterium for growth promotion and biological control of soilborne diseases in pepper and tomato. Biol. Control. 51:245-258   DOI
41 Knudsen, I. M. B. 1997. Selection of biological control agents for controlling soil and seed-bone diseases in the fIeld. European J. Plant Pathol. 103:775-784   DOI   ScienceOn
42 Janisiewicz, W. J. 1996. Ecological diversity, niche overlap, and coexistence of antagonists used in developing mixtures for biocontrol of post-harvest diseases of apples. Phytopathology 86:473-479   DOI