DOI QR코드

DOI QR Code

Biological Control of Soilborne Diseases on Tomato, Potato and Black Pepper by Selected PGPR in the Greenhouse and Field in Vietnam

  • Thanh, D.T. (Plant Pathology Division, Plant Protection Research Institute (PPRI)) ;
  • Tarn, L.T.T. (Plant Pathology Division, Plant Protection Research Institute (PPRI)) ;
  • Hanh, N.T. (Plant Pathology Division, Plant Protection Research Institute (PPRI)) ;
  • Tuyen, N.H. (Plant Pathology Division, Plant Protection Research Institute (PPRI)) ;
  • Srinivasan, Bharathkumar (Microbial Resources Lab., Department of Agricultural Microbiology, National Academy of Agricultural Science, RDA) ;
  • Lee, Sang-Yeob (Microbial Resources Lab., Department of Agricultural Microbiology, National Academy of Agricultural Science, RDA) ;
  • Park, Kyung-Seok (Microbial Resources Lab., Department of Agricultural Microbiology, National Academy of Agricultural Science, RDA)
  • Published : 2009.09.30

Abstract

Bacterial wilt, Fusarium wilt and Foot rot caused by Ralstonia solanacearum, Fusarium oxysporum, and Phytophthora capsici respectively, continue to be severe problems to tomato, potato and black pepper growers in Vietnam. Three bio-products, Bacillus vallismortis EXTN-1 (EXTN-1), Bacillus sp. and Paenibacillus sp. (ESSC) and Bacillus substilis (MFMF) were examined in greenhouse bioassay for the ability to reduce bacterial wilt, fusarium wilt and foot rot disease severity. While these bio-products significantly reduced disease severities, EXTN-1 was the most effective, providing a mean level of disease reduction 80.0 to 90.0% against bacterial wilt, fusarium wilt and foot rot diseases under greenhouse conditions. ESSC and MFMF also significantly reduced fusarium wilt, bacterial wilt and foot rot severity under greenhouse conditions. Bio-product, EXTN-1 with the greatest efficacy under greenhouse condition was tested for the ability to reduce bacterial wilt, fusarium wilt and foot rot under field condition at Song Phuong and Thuong Tin locations in Ha Tay province, Vietnam. Under field condition, EXTN-1 provided a mean level of disease reduction more than 45.0% against all three diseases compared to water treated control. Besides, EXTN-1 treatment increased the yield in tomato fruits 17.3% than water treated control plants.

Keywords

References

  1. Ahn, I. P., Park, K. S. and Kim, C. H. 2002. Rhizobacteriainduced resistance perturbs viral disease progress and triggers defense-related gene expression. Mol. Cells 13:302-308
  2. Bar-Ness, E., Hadar, Y., Chen, Y., Romheld, V. and Marschner, H. 1992. Short tenn effects ofrhizosphere microorganisms on Fe uptake from microbial siderophores by maize and oat. Plant Physiol. 100:451-456 https://doi.org/10.1104/pp.100.1.451
  3. Ciampi-Panno, L., Fernandez, C., Bustamante, P., Andrade, N., Ojeda, S. and Contreras, A. 1989. Biological control of bacterial wilt of potatoes caused by Pseudomonas solanacearum. Am. Potato J. 66:315-332 https://doi.org/10.1007/BF02854019
  4. Chanway, C. P., Hynes, R. K. and Nelson, L. M. 1989. Plant growthpromoting rhizobacteria: Effects on growth and nitrogen fIxation of lentils and pea. Soil BioI. Biochem. 21:511-517 https://doi.org/10.1016/0038-0717(89)90123-5
  5. de Boer, M., Bom, P., Kindt, F., Keurentjes, J. J. B., van der Sluis, I., van Loon, L. C. and Bakker, P. A. H. M. 2003. Control of Fusarium wilt of radish by combining Pseudomonas putida strains that have different disease-suppressive mechanisms. Phytopathology 93:626-632 https://doi.org/10.1094/PHYTO.2003.93.5.626
  6. Doan, T. T. and Nguyen, T. H. 2006. Status of research on biological control of tomato and groundnut bacterial wilt in Vietnam. Biocontrol of bacterial plant diseases, Ist symposium. Mitt. Biol. Bundesanst. Land-Forstwirtschaft Berlin-Dahlem, 408
  7. Domenech, J., Reddy, M. S., Kloepper, J. W., Ramos, B. and Manero, J.G. 2006. Combined application of the biological product LS213 with Bacillus, Pseudomonas or Chryseobacterium for growth promotion and biological control of soilborne diseases in pepper and tomato. Biol. Control. 51:245-258 https://doi.org/10.1007/s10526-005-2940-z
  8. Dreath, A. and Sendall, B. 2004. Economic impact of Phytophthora disease in Southeast Asia. Dreath, A. and Guest, D. I., ed. 2004. Diversity and management of Phytophthora in Southeast Asia. ACIAR Monograph No. 114, 238p:10-28
  9. French, E. R. and Sequeira, L. 1970. Strains of Pseudomonas solanacearum from Central and South America: a comparative study. Phytopathology 60:506-512 https://doi.org/10.1094/Phyto-60-506
  10. Glick, B. R., Liu, C., Ghosh, S. and Dumbroff, E. B. 1997. Early development of canola seedlings in the presence of the plant growth promoting rhizobacterium Pseudomonas putida GR 12-2. Soil BioI. Biochem. 29:1233-1239 https://doi.org/10.1016/S0038-0717(97)00026-6
  11. Guo, J. H., Qi, H. Y., Guo, Y. H., Ge, H. L., Gong, L. Y., Zhang, L. X. and Sun, P. H. 2004. Biocontrol of tomato wilt by plant growth promoting rhizobacteria. Biol. Control 29:66-72 https://doi.org/10.1016/S1049-9644(03)00124-5
  12. Hayward, A. C. 1991. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu. Rev. Phytopathology. 29:65-87 https://doi.org/10.1146/annurev.py.29.090191.000433
  13. Hide, G. A., Read, P. J. and Hall, S. M. 1992. Resistance to thiabendazole in Fusarium species isolated from potato tubers affected with dry rot. Plant Pathology 41:745-748 https://doi.org/10.1111/j.1365-3059.1992.tb02558.x
  14. Janisiewicz, W. J. 1996. Ecological diversity, niche overlap, and coexistence of antagonists used in developing mixtures for biocontrol of post-harvest diseases of apples. Phytopathology 86:473-479 https://doi.org/10.1094/Phyto-86-473
  15. Jinnah, M. A., Khalequzzaman, K. M., Islam, M. S., Siddique, M. A. K. S. and Ashrafuzzaman, M. 2002. Control of bacterial wilt of tomato by Pseudomonas fluorescens in the fIeld. Pakistan J. Sci. 5:1167-1169 https://doi.org/10.3923/pjbs.2002.1167.1169
  16. Jubina, P. A. and Girija, V. K. 1998. Antagonistic rhizobacteria for management of Phytophthora capsici, the incitant of foot rot of black pepper. J. Mycol. Plant Pathol. 28:147-153
  17. Kim, Y. C., Jung, H., Kim, K. Y. and Park, S. K. 2008. An effective biocontrol biofonnulation against Phytophthora blight of pepper using growth mixtures of combined chitinolytic bacteria under different fIeld conditions. Eur. J. Plant Pathol. 120:373-382 https://doi.org/10.1007/s10658-007-9227-4
  18. Kloepper, J. W., Leong, J, Teintze, M. and Schroth, M. N. 1980. Enhanced plant growth by siderophores produced by plant growth promoting rhizobacteria. Nature 286:885-886 https://doi.org/10.1038/286885a0
  19. Kloepper, J. W., Hume, D. J., Scher, F. M., Singleton, C., Tipping, B., Lalibert, M., Frauley, K., Kutchaw, T., Simonson, C., Lifshitz, R., Zaleska, I. and Lee, L. 1988. Plant growth-promoting rhizobacteria on canola (rapeseed). Plant Dis. 72:42-45 https://doi.org/10.1094/PD-72-0042
  20. Kloepper, J. W., Ryu, C. M. and Zhang, S. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology. 94:1259-1266 https://doi.org/10.1094/PHYTO.2004.94.11.1259
  21. Knudsen, I. M. B. 1997. Selection of biological control agents for controlling soil and seed-bone diseases in the fIeld. European J. Plant Pathol. 103:775-784 https://doi.org/10.1023/A:1008662313042
  22. Larkin, R. P. and Fravel, D. R. 1998. Efficacy of various fungal and bacterial biocontrol organisms for control of fusarium wilt of tomato. Plant Dis. 82:1022-1028 https://doi.org/10.1094/PDIS.1998.82.9.1022
  23. Lemessa, F. and Zeller, W. 2007. Screening rhizobacteria for biological control of Ralstonia solanacearum in Ethiopia. Biol. Control. 42:336-344 https://doi.org/10.1016/j.biocontrol.2007.05.014
  24. Malhotra, S. K. and Vashistha, R. N. 1993. Genetics of resistance to Fusarium wilt race 1 in current tomato (Lycopersicon pimpinellifolium). Indian J. Agri. Sci. 63:246-347
  25. McGrath, D. J., Gillespie, D. and Vawdrey, L. 1987. Inheritance of resistance to Fusarium oxysporum f.sp. lycopersic race 2 and race 3 in L. pennellii. Aust. J Agric. Res. 38:729-733 https://doi.org/10.1071/AR9870729
  26. Nguyen, V. T., Liew, C. Y. F. and Burgess, L. W. 2006. Mating types of Phytophthora capsici Leonian, the causal fimgus of quick wilt of black pepper. Vietnam J. Plant Prot. 3:14-18
  27. Nguyen, V. T. 2002. Initial diagnosis and identification on the foot rot disease of black pepper in Vietnam. Paper presented at 1st National Conference on Plant pathology and Molecular Biology, Agriculture-Forestry University of Ho Chi Minh City
  28. Park, K. S., Ahn, I. P. and Kim, C. H. 2001. Systemic resistance and expression of the pathogenesis-related genes mediated by the plant growth-promoting rhizobacterium Bacillus amyloliquejaciens EXTN-1 against anthracnose disease in cucumber. Mycobiology 29:48-53
  29. Park, K. S., Paul, D. and Ye, W. H. 2006a. Bacillus vallismortis EXTN-1 mediated growth promotion and disease suppression in rice COryza sativa L.). Plant Pathology J. 22:278-282 https://doi.org/10.5423/PPJ.2006.22.3.278
  30. Park, K. S., Paul, D., Ryu, K. R., Kim, E. Y. and Kim, Y. K. 2006b. Bacillus vallismortis strain EXTN-1 mediated systemic resistance against Potato Virus X and Y (PYX & PVY) in the field. Plant Pathology J. 22:360-363 https://doi.org/10.5423/PPJ.2006.22.4.360
  31. Park, K., Diby, P., Kim, Y. K., Nam, K. W., Lee, Y. K., Chui, H. W. and Lee, S. Y. 2007. Induced systemic resistance by Bacillus vallismortis EXTN-1 suppressed bacterial wilt in tomato caused by Ralstonia solanacearum. Plant Pathol. J. 23:22-25 https://doi.org/10.5423/PPJ.2007.23.1.022
  32. Raupach, G. S. and Kloepper, J. W. 1998. Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology 88:1158-1164 https://doi.org/10.1094/PHYTO.1998.88.11.1158
  33. Richardson, A. E. 2001. Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust. J. Plant Physiol. 28:897-906 https://doi.org/10.1071/PP01093
  34. SAS Institute. 1995. JMP Statistics and Graphics Guide. Version 3. Pp. 65-95. Cary, NC
  35. Schell, M. A. 2000. Control of virulence and pathogenicity genes of Ralstonia solanacearum by an elaborate sensory network. Annu. Rev. Phytopathol. 38:263-92 https://doi.org/10.1146/annurev.phyto.38.1.263
  36. Timmusk, S., Nicander, B., Granhall, U. and Tillberg, E. 1999. Cytokinin production by Paenibacillus polymyxa. Soil Biol. Biochem. 31:1847-1852 https://doi.org/10.1016/S0038-0717(99)00113-3
  37. Ton, N. T. 2005. Nghien cuu Cac giai Phap cong nghe Vat hi truong de phat trine vung ho tieu nguyen lieu Phuc Vu Che bien Va xuat Khuan. Bo Khoa Hoc va Cong Nghe, Vien Khoa Hoc Mien Nam, 121 Nguyen Binh Khiem-Thanh Pho Ho Chi Minh, 267p.
  38. Truong, N. V., Burgess, L. W. and Liew, E. C. Y. 2008. Prevalence and etiology of Phytophthora foot rot of black pepper in Vietnam. Aust. Plant Pathol. 37:431-442 https://doi.org/10.1071/AP08034
  39. Vidhyasekaran, P., Sethuraman, K., Rajappan, K. and Vasumathi, K. 1997. Powder fonnulations of Pseudomonas fluorescens to control pigeonpea wilt. BioI. Control 8: 166-171 https://doi.org/10.1006/bcon.1997.0511
  40. Violante, H. G. M. and Portugal, V. O. 2007. Alteration of tomato fruit quality by root inoculation with plant growth-promoting rhizobacteria (PGPR): Bacillus subtilis BEB-13bs Sci. Hort. 113:103-106 https://doi.org/10.1016/j.scienta.2007.01.031
  41. Weller, D. M. 1988. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu. Rev. Phytopathol. 26:379-407 https://doi.org/10.1146/annurev.py.26.090188.002115
  42. Whipps, J. M. 1997. Developments in biological control of soil borne plant pathogens. Adv. Bot. Res. 26:1-134 https://doi.org/10.1016/S0065-2296(08)60119-6

Cited by

  1. Recent Trends in Control Methods for Bacterial Wilt Diseases Caused by Ralstonia solanacearum vol.30, pp.1, 2015, https://doi.org/10.1264/jsme2.ME14144
  2. Biological control of Ralstonia wilt, Phytophthora blight, Meloidogyne root-knot on bell pepper by the combination of Bacillus subtilis AR12, Bacillus subtilis SM21 and Chryseobacterium sp. R89 vol.139, pp.1, 2014, https://doi.org/10.1007/s10658-013-0369-2
  3. Envrionment-Friendly Effects of Espil and Copper Hydroxide for Prevention of Powdery Mildew on Cucumber, Tomato, and Red Pepper vol.20, pp.2, 2014, https://doi.org/10.5423/RPD.2014.20.2.095
  4. Effect of Microbial Agent on Control of Tomato Gray mold and Powdery mildew vol.16, pp.4, 2012, https://doi.org/10.7585/kjps.2012.16.4.364
  5. Interaction between PGPR and PGR for water conservation and plant growth attributes under drought condition vol.73, pp.11, 2018, https://doi.org/10.2478/s11756-018-0127-1