• Title/Summary/Keyword: potable groundwater

Search Result 14, Processing Time 0.034 seconds

The Observation and a Quantitative Evaluation of Viable but Non-Culturable Bacteria in Potable Groundwater Using Epifluorescence Microscopy (형광현미경을 이용한 음용 지하수내 배양불능 세균의 관찰 및 정량적 평가)

  • ;Takashi Someya
    • Korean Journal of Microbiology
    • /
    • v.38 no.3
    • /
    • pp.180-185
    • /
    • 2002
  • The direct viable count (DVC) and plate count (PC) methods was used to measure the number of bacteria in potable groundwater samples collected from bottled water from the market, mineral water, and edible groundwater near the urban areas and the stock farming congested areas. As a result, the number of living bacteria by DVC was comprised 30~80% of the total direct count (TDC), whereas the number of living bacteria by PC was around l~30% of DVC. Such results show that viable but non-culturable (VBNC) bacteria exist in the potable groundwater with high percentages. On the other hand, upon measuring the value from the conventional nutrient broth (NB), $10^-2$ fold diluted nutrient broth (DNB), and R2A broth, the values from the DNB and R2A showed 2~50 times higher than the conventional NB medium. These results indicate that oligotrophic bacterial groups which can multiply in the low nutrient broth abundantly exist in the oligotrophic environment like potable groundwater.

농촌지역 간이상수도 수질에 대한 수리지화학적 특성: 충남 금산군 일대

  • 이진수;고경석;김용재
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.369-372
    • /
    • 2004
  • This study presents the hydrogeochmical investigation to know the effect of geology and sources for water quality in small potable water supply system at rural area. The results of water quality in Geumsan area showed the 3.2% of water samples exceeded the limit of drinking water standard by bacteria. The hydrochemical investigation results indicated the high EC, Ca and HCO$_3$ in surface water and metasedimentary rocks and this is caused by the dissolution of calc-slicate minerals of metasedimentary rocks.

  • PDF

Phylogenetic Analysis of Oligotrophic Bacteria Found in Potable Groundwater (음용 지하수중에 분포하는 저영양세균의 계통학적 해석)

  • ;Tomoyoshi Hashimoto
    • Korean Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.293-298
    • /
    • 2002
  • In order to investigate the ecological aspect of bacteria on groundwater, water samples were collected from various regions. Total of 318 strains were isolated from diluted nutrient broth (DNB) agar medium, and investigated their growth pattern on nutrient broth (NB) medium. As a result, all the isolated strains were divided into two groups, NB and DNB organisms. Growth of DNB organisms were suppressed in full strength NB medium but not in DNB medium, which were called oligotrophic bacteria in this study. Proportion of DNB organisms occurred in the frequency of 50-98% in potable groundwaters (CW, CJ, DPG, CJG1), however, it was 23,46% in polluted site (TJ, NPG1). One hundred and two strains were identified as oligotrophic bacteria and their phylogenetic characteristics were determined by using 16S rDNA sequencing. Based on the phylogenetic analysis, they were found to fall into three major phylogenetic groups: belonging to the Proteobacteria $\alpha$-(49 strains), $\beta$-(50 strains), $\gamma$ -(3 strains) subdivisions. The phylogenetic analysis suggested that microbial diversity of potable groundwater is more complex than that obtained in the past investigation.

논산지역 간이급수시설 수질특성에 대한 연구

  • Go Gyeong-Seok;Lee Jin-Su;Kim Tong-Gwon;Kim Jae-Gon;Jo Seong-Hyeon;Seok Hui-Jun;Kim Hyeong-Su
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.344-347
    • /
    • 2005
  • The purpose of the study for the development of the technologies of water quality monitoring and contamination protection at water resource aquifer is to secure the groundwater as potable water resources. The results of water analysis as a basis of potable water criteria showed that 30 groundwater samples among 138 samples of small water supply system (21.7%) were exceeded the water criteria. The concentrations of Cl, $NO_3$ and Na for granite area are higher than those of gneiss and metasedimentary rocks of Ogcheon belt area and they are caused by the high vulnerability of groundwater at granite region where the residential area and cultivated land are concentrated. The spatial distribution of components indicated the close relationships between water quality and geology, land use, and topography. The multivariate statistical results showed that the water samples are divided into three groups by geology.

  • PDF

강변여과수 취수에 따른 지하수위의 계절적인 변동 특성

  • Jeong Jae-Yeol;Ham Se-Yeong;Lee Jeong-Hwan;Kim Hyeong-Su;Ryu Sang-Hon;Kim Tae-Won;Kim Mun-Su
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.68-71
    • /
    • 2006
  • Seasonal fluctuation of groundwater level by pumping amount and stream discharge at the riverbank filtrate site adjacent to the Nakdong River in Daesan-Myeon was characterized. Groundwater level fluctuation shows increase in wet season (June, July, August and September) and decrease in dry season (the other months). Seasonal variation of pumping amount shows similar trend to the groundwater fluctuation due to higher consumption of potable water in summer. The relation of specific capacity, Nakdong River and pumping quantity was analyzed. The logarithmic relationship between specific capacity and the stream discharge gives high correlation coefficient, 0.96. This fact indicates that the increase of stream discharge rate reduces the rate of drawdown in the pumping area in wet season.

  • PDF

Quantification and Evaluation of Groundwater Quality Grade by Using Statistical Approaches (통계적 분석 방법을 이용한 국가지하수수질측정망의 오염 등급 정량화 및 평가)

  • Yoon, Hee-Sung;Bae, Gwang-Ok;Lee, Kang-Kun
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.1
    • /
    • pp.22-32
    • /
    • 2012
  • This study suggests a method to grade groundwater quality quantitatively using statistical approaches for evaluating the quality of groundwater in wells included in the Groundwater Quality Monitoring Network (GQMN). The proposed analysis method is applied to GQMN data from 2001 to 2008 for nitrate nitrogen, chloride, trichloroethylene, potential of hydrogen (pH), and electrical conductivity. The analysis results are obtained as groundwater quality grades of the groundwater representing each of the monitoring stations. The degree of groundwater contamination is analysed for water quality parameters, district, and usage. The results show that the degree of groundwater contamination is relatively high by nitrate nitrogen, bacteria and electrical conductivity and at Seoul, Incheon, Gwangju, Gyeonggido and Jeollado. The degree of contamination by nitrate nitrogen and trichloroethylene is especially high when the groundwater is used for agricultural and industrial water, respectively. It is evaluated that potable groudnwater in GQMN is significantly vulnerable to nitrate nitrogen and bacteria contamination.

The Influence of the Surrounding Groundwater by Groundwater Discharge from the Subway Tunnel at Suyeong District, Busan City (부산 수영구 지하철 터널에서의 지하수 유출이 주변 지하수에 미치는 영향)

  • Chung, Sang-Yong;Kim, Tae-Hyung;Park, Nam-Sik
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.2
    • /
    • pp.28-36
    • /
    • 2012
  • This study carried out several kinds of investigations such as geology, hydrogeology, groundwater level and quality, surface-water quality, and the quantity and quality of groundwater discharge from the subway to identify the causes of groundwater contamination around the subway tunnel at Suyeong District in Busan City. Geostatistical analyses were also conducted to understand the characteristics of groundwater level and quality distributions. There are Kwanganri Beach and Suyeong River in the study area, which are basically influenced by seawater. The total quantities of groundwater utilization and groundwater discharge from the subway tunnel in Suyeong District are 2,282,000 $m^3$/year, which is 2.4 times larger than the sustainable development yield of groundwater. The lowest groundwater level around the subway tunnel is about 32 m below the mean sea-level. The large drawdown of groundwater led to the inflow of seawater and salinized river water toward the subway tunnel, and therefore the quality of groundwater didn't satisfy the criteria of potable, domestic, agricultural and industrial uses. Distribution maps of groundwater level and qualities produced by kriging were very useful for determining the causes of groundwater contamination in the study area. The distribution maps of electrical conductivity, chloride and sulfate showed the extent of seawater intrusion and the forceful infiltration of the salinized Suyeong River. This study revealed that seawater and salinized river water infiltrated into the inland groundwater and contaminated the groundwater around the subway tunnel, because the groundwater level was seriously drawdowned by groundwater discharge from the subway tunnel. The countermeasure for the minimization of groundwater discharge from the subway tunnel is necessary to prevent the groundwater obstacles such as groundwater depletion, groundwater-quality deterioration, and land subsidence.

Assessment of drinking water quality and its health impact on local community in coastal belt Karachi

  • Samo, Saleem Raza;Channa, Raja Siraj Ahmed;Mukwana, Kishan Chand
    • Advances in environmental research
    • /
    • v.6 no.3
    • /
    • pp.203-216
    • /
    • 2017
  • For survival of human beings clean water is an essential commodity whereas contamination in drinking water threatens to mankind. The main cause of water contamination is social and development activities of human being along with increasing population. The community in the study area has acute shortage of drinking water along with about 40 to 60% has no access to safe drinking water. This study indicates drinking water quality of two major sources of coastal belt of Karachi one is supplied by Karachi Water & Sewerage Board (KWSB) as tap water and the other through groundwater. The physicochemical analysis was carried out by following the standard methods for checking the quality of drinking water. The analyzed results showed that the quality of groundwater was unfit as potable water. The most critical situation was observed as high level of contamination followed by high turbidity and increased salinity levels. TDS in surface water were found 12% above and TDS in groundwater was 20% below the National Drinking Water Quality Standards (NDWQS) of Pakistan as well as the permissible WHO drinking water quality guidelines.

Hydrogeochemistry and Statistical Analysis of Water Quality for Small Potable Water Supply System in Nonsan Area (논산지역 마을상수도 수질의 수리지화학 및 통계 분석)

  • Ko, Kyung-Seok;Ahn, Joo-Sung;Suk, Hee-Jun;Lee, Jin-Soo;Kim, Hyeong-Soo
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.6
    • /
    • pp.72-84
    • /
    • 2008
  • This study was carried out to provide proper management plans for small portable water supply system in the Nonsan area through water quality monitoring, hydrogeochemical investigation and multivariate statistical analyses. Nonsan area is a typical rural area heavily depending on small water supply system for portable usage. Geology of the area is composed of granite dominantly along with metasedimentary rocks, gneiss and volcanic rocks. The monitoring results of small portable water supply system showed that 13-21% of groundwaters have exceeded the groundwater standard for drinking water, which is 5 to 8 times higher than the results from the whole country survey (2.5% in average). The major components exceeding the standard limits are nitrate-nitrogen, turbidity, total coliform, bacteria, fluoride and arsenic. High nitrate contamination observed at southern and northern parts of the study area seems to be caused by cultivation practices such as greenhouses. Although Ca and $HCO_3$ are dominant species in groundwater, concentrations of Na, Cl and $NO_3$ have increased at the granitic area indicating anthropogenic contamination. The groundwaters are divided into 2 groups, granite and metasedimentary rock/gneiss areas, with the second principal component presenting anthropogenic pollution by cultivation and residence from the principal components analysis. The discriminant analysis, with an error of 5.56% between initial classification and prediction on geology, can explain more clearly the geochemical characteristics of groundwaters by geology than the principal components analysis. Based on the obtained results, it is considered that the multivariate statistical analysis can be used as an effective method to analyze the integrated hydrogeochemical characteristics and to clearly discriminate variations of the groundwater quality. The research results of small potable water supply system in the study area showed that the groundwater chemistry is determined by the mixed influence of land use, soil properties, and topography which are controlled by geology. To properly control and manage small water supply systems for central and local governments, it is recommended to construct a total database system for groundwater environment including geology, land use, and topography.

Occurrence Characteristics of Uranium and Radon-222 in Groundwater at ○○ Village, Yongin Area (용인 ○○마을 지하수내 우라늄 및 라돈-222의 산출특성)

  • Jeong, Chan Ho;Yang, Jae Ha;Lee, Yong Cheon;Lee, Yu Jin;Cho, Hyeon Young;Kim, Moon Su;Kim, Hyun Koo;Kim, Tae Seong;Jo, Byung Uk
    • The Journal of Engineering Geology
    • /
    • v.26 no.2
    • /
    • pp.261-276
    • /
    • 2016
  • The occurrence of natural radioactive materials such as uranium and radon-222 in groundwater was examined with hydrogeochemistry and geology at ○○ village in the Yongin area. Two rounds of 19 groundwater and 5 surface water sampling were collected for analysis. The range of pH value in groundwaters was 5.81 to 7.79 and the geochemical types of the groundwater were mostly Ca(Na)-HCO3 and Ca(Na)-NO3(Cl)-HCO3. Uranium and radon-222 concentrations in the groundwater ranged from 0.06 to 411 μg/L and from 5.56 to 903 Bq/L, respectively. Two deep groundwaters used as common potable well-water sources exceeded the maximum contaminant levels of the uranium and radon-222 proposed by the United States Environmental Protection Agency (US EPA). Three groundwater samples from residential areas contained unsuitable levels of uranium, and 12 groundwater samples were unsuitable due to radon-222 concentrations. Radioactive materials in the unsuitable groundwater are naturally occurring in a Jurassic amphibole- and biotite-bearing granitic gneiss. High uranium and radon-222 groundwater concentrations were only observed in two common wells; the others showed no relationship between bedrock geology and groundwater geochemical constituents. With such high concentrations of naturally occurring radioactive materials in groundwater, the affected areas may extend tens of meters for uranium and even farther for radon-222. Therefore, we suggest the radon-222 and the uranium did not originate from the same source. Based on the distribution of radon-222 in the study area, zones of higher radon-222 concentrations may be the result of diffusion through cracks, joint, or faults. Surface radioactivity and uranium concentrations in the groundwater show a positive relationship, and the impact areas may extend for ~200m beyond the well in the case of wells containing high concentrations of uranium. The highest uranium and thorium concentrations in rock samples were detected in thorite and monazite.