Browse > Article
http://dx.doi.org/10.7857/JSGE.2012.17.1.022

Quantification and Evaluation of Groundwater Quality Grade by Using Statistical Approaches  

Yoon, Hee-Sung (Korea Institute of Geoscience and Mineral Resources)
Bae, Gwang-Ok (School of Earth and Environmental Sciences, Seoul National University)
Lee, Kang-Kun (School of Earth and Environmental Sciences, Seoul National University)
Publication Information
Journal of Soil and Groundwater Environment / v.17, no.1, 2012 , pp. 22-32 More about this Journal
Abstract
This study suggests a method to grade groundwater quality quantitatively using statistical approaches for evaluating the quality of groundwater in wells included in the Groundwater Quality Monitoring Network (GQMN). The proposed analysis method is applied to GQMN data from 2001 to 2008 for nitrate nitrogen, chloride, trichloroethylene, potential of hydrogen (pH), and electrical conductivity. The analysis results are obtained as groundwater quality grades of the groundwater representing each of the monitoring stations. The degree of groundwater contamination is analysed for water quality parameters, district, and usage. The results show that the degree of groundwater contamination is relatively high by nitrate nitrogen, bacteria and electrical conductivity and at Seoul, Incheon, Gwangju, Gyeonggido and Jeollado. The degree of contamination by nitrate nitrogen and trichloroethylene is especially high when the groundwater is used for agricultural and industrial water, respectively. It is evaluated that potable groudnwater in GQMN is significantly vulnerable to nitrate nitrogen and bacteria contamination.
Keywords
Groundwater Quality Monitoring Network; Statistical approach; Groundwater quality grade; Degree of contamination;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Rapant, S., Raposova, M., Bodis, D., Marsina, K., and Slaninka, I., 1999, Environmental-geochemical mapping program in the Slovak Republic, J. Geochem. Explor., 66(1-2), 151-158.   DOI   ScienceOn
2 Sen, P.K., 1968, Estimate of the regression coefficient based on Kendall's tau, J. Am. Stat. Assoc., 63, 1379-1389.   DOI
3 Sinan M. and Razack, M., 2009, An extension to the DRASTIC model to assess groundwater vulnerability to pollution: application to the Haouz aquifer of Marrakech (Morocco), Environ. Geol., 57(2), 349-363.   DOI
4 Vasanthavigar, M., Srinivasamoorthy, K., Vijayaragavan, K., Ganthi, R.R., Chidambaram, S., Anandhan, P., Manivannan, R., and Vasudevan S., 2010, Application of water quality index for groundwater quality assessment: Thirumanimuttar sub-basin, Tamilnadu, India, Environ. Monit. Assess., 171(1-4), 595-609.   DOI
5 Wen, X., Wu, J., and Si, J., 2009, A GIS-based DRASTIC model for assessing shallow groundwater vulnerability in the Zhangye Basin, northwestern China, Environ. Geol., 57(6), 1435-1442.   DOI
6 Yu, C., Yao, Y., Hayes, G., Zhang, B., and Zheng, C., 2010, Quantitative assessment of groundwater vulnerability using index system and transport simulation, Huangshuihe catchment, China, Sci. Total Environ., 408(24), 6108-6116.   DOI
7 Foster, S.D.D., 1987, Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy, In: van Duijvenbooden, W., van Waegeningh, H.G. (Eds.), Vulnerability of soils and groundwater to pollution, TNO Committee on Hydrological Research, The Hague, Proceedings and information, 38, 69-86.
8 Gilbert, R.O., 1987, Statistical methods for environmental pollution monitoring, Van Nostrand Reinhold, New York, NY, p. 320.
9 Gomezdelcampo, E. and Dickerson, J.R., 2008, A modified DRASTIC model for siting confined animal feeding operations in Williams County, Ohio, USA, Environ. Geol., 55(8), 1821-1832.   DOI
10 Guo, Q., Wang, Y., Gao, X., and Ma, T., 2007, A new model (DRARCH) for assessing groundwater vulnerability to arsenic contamination at basin scale: a case study in Taiyuan basin, northern China, Environ. Geol., 52(5), 923-932.   DOI
11 Lee, J.Y., Moon, S.H., and Lee, K.K., 2007, Determining the condition of groundwater in evaluating the need for corrective measures: a case for the national groundwater-monitoring network in South Korea, Hydrogeol. J., 16(1), 123-137.
12 Maurice, G. and Kendall, Sc.D., 1955, Rank correlation methods, Hafner Publishing Company, New York, NY, p. 196.
13 환경부, 2008, 2007년 지하수 수질측정망 운영결과, 환경부.
14 Mendoza, J.A. and Barmen, G., 2006, Assessment of groundwater vulnerability in the Rio Artiguas basin, Nicaragua, Environ. Geol., 50(4), 569-580.   DOI
15 Naftz, D.L., Bullen, T.D., Stolp, B.J., Wilkowske, C.D., 2008, Utilizing geochemical, hydrological, and boron isotopic data to assess the success of a salinity and selenium remediation project, Upper Colorado River Basin, Utah, Sci. Total Envion., 391(1), 1-11.   DOI
16 Pusatli, O.T., Camur, M.Z., and Yazicigil, H., 2009, Susceptibility indexing method for irrigation water management planning: Applications to K. Menderes river basin, Turkey, J. Environ. Manage., 90(1), 341-347.   DOI   ScienceOn
17 환경부, 2009, 2008년 지하수 수질측정망 운영결과, 환경부.
18 함세영, 정재열, 김무진, 김인수, 황한석, 2004, DRASTIC과 지하수 수질에 의한 창원시 지하수 오염취약성 평가, 자원환경지질, 37(6), 631-645.
19 Al-Amoush, H., Hammouri, N.A., Zunic, F., and Salameh, 2010, Intrinsic vulnerability assessment for the alluvial aquifer in the northern part of Jordan Valley, Water Resour. Manage., 24(13), 3461-3485.   DOI
20 Aller, L., Bennett, T., Lehr, J.H., Petty, R.J., and Hackett, G., 1987, DRASTIC: A standardized system for evaluating groundwater pollution potential using hydrogeologic settings. EPA/600/2-87/035, US Environmental Protection Agency, Washington, DC, p. 455.
21 Babiker I.S., Mohamed, A.A., Mohamed, Hiyama, T., and Kato, K., 2005, A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan, Sci. Total Environ., 345(1-3), 127-140.   DOI
22 Backman, B., Bodis, D., Lahermo, P., Rapant, S., and Tarvainen, T., 1998, Application of a groundwater contamination index in Finland and Slovakia, Environ. Geol., 36(1-2) 55-64.   DOI
23 Edet, A.E., 2004, Vulnerability evaluation of a coastal plain sand aquifer with a case example from Calabar, southeastern Nigeria, Environ. Geol., 45(8), 1062-1070.   DOI
24 Civita, M., 1994, Vulnerability maps of aquifer subjected to pollution: theory and practice (in Italian), Pitagora Editrice, Bologna.
25 한정상, 1998, 지하수환경과 오염, 박영사, 서울, p. 1017.
26 D'Alessandro, W., Bellomo, S., Bonfanti, P., Brusca, L., and Longo, M., 2010, Salinity variations in the water resources fed by the Etnean volcanic aquifers (Sicily, Italy): natural vs. anthropogenic causes, Environ. Monit. Assess., Article in press.
27 강진희, 박은규, 2010, DRASTIC과 SINTACS 모델의 비교적용에 의한 부여읍 일대의 지하수 오염 취약성 평가, 지하수토양환경, 15(5), 32-39.
28 박정구, 김락현, 이진용, 최동혁, 김태동, 2007, 우리나라 지하수 수질측정망 현황 평가 및 개선을 위한 고찰, 지하수토양환경, 12(6), 92-99.
29 이병대, 윤욱, 성익환, 2007, 울산지역 토지이용도에 따른 지하수 수질 및 오염특성, 지하수토양환경, 12(6), 78-91.
30 안주성, 고경석, 전철민, 2007, 국내 지하수의 비소산출양상, 지하수토양환경, 12(5), 64-72.
31 이사로, 김윤종, 1996, DRASTIC SYSTEM을 이용한 지하수 오염 가능성 및 위험 분석 연구, 한국GIS학회, 4(1), 1-11.
32 이진용, 이명재, 이재명, 안경환, 원종호, 문상호, 조민조, 2006, 국가 지하수관측소 지하수위, 전기전도도 및 수온자료에 대한 모수적 및 비모수적 변동 경향성 분석, 지하수토양환경, 11(2), 56-67.
33 이현주, 박은규, 김강주, 박기훈, 2008, DRASTIC 모델 및 지하수 수치모사 연계 적용에 의한 부여읍 일대의 지하수 오염 취약성 평가, 지하수토양환경, 13(1), 77-91.
34 최현미, 이진용, 2009, 제주도 지하수 관측망 수위에 대한 모수 및 비모수 변동경향 분석, 지하수토양환경, 14(5), 41-50.