• 제목/요약/키워드: post-buckled behavior

검색결과 13건 처리시간 0.023초

후좌굴 변단면 기둥의 기하 비선형 해석 (Geometrical Nonlinear Analyses of Post-buckled Columns with Variable Cross-section)

  • 이병구;김석기;이태은;김권식
    • 대한토목학회논문집
    • /
    • 제29권1A호
    • /
    • pp.53-60
    • /
    • 2009
  • 이 논문은 양단회전 후좌굴 변단면 기둥의 기하 비선형 해석에 관한 연구이다. 기둥의 변단면은 변화폭, 변화깊이, 정방형 변단면으로 채택하였다. Bernoulli-Euler 보 이론을 이용하여 후좌굴 기둥의 정확탄성곡선을 지배하는 미분방정식을 유도하였다. 이 미분방정식은 두 개의 미지수를 가지며 이러한 미분방정식을 풀 수 있는 수치해석 방법을 개발하였다. 후좌굴 기둥의 수치해석 결과로 평형경로, 정확탄성곡선 및 합응력을 산정하였다. 실험을 통하여 후좌굴 거동의 이론을 검증하였다.

Vibration and Post-buckling Behavior of Laminated Composite Doubly Curved Shell Structures

  • Kundu, Chinmay Kumar;Han, Jae-Hung
    • Advanced Composite Materials
    • /
    • 제18권1호
    • /
    • pp.21-42
    • /
    • 2009
  • The vibration characteristics of post-buckled laminated composite doubly curved shells are investigated. The finite element method is used for the analysis of post-buckling and free vibration of post-buckled laminated shells. The geometric non-linear finite element model includes the general non-linear terms in the strain-displacement relationships. The shell geometry used in the present formulation is derived using an orthogonal curvilinear coordinate system. Based on the principle of virtual work the non-linear finite element equations are derived. Arc-length method is implemented to capture the load-displacement equilibrium curve. The vibration characteristics of post-buckled shell are performed using tangent stiffness obtained from the converged deflection. The code is first validated and then employed to generate numerical results. Parametric studies are performed to analyze the snapping and vibration characteristics. The relationship between loads and fundamental frequencies and between loads and the corresponding displacements are determined for various parameters such as thickness ratio and shallowness.

선형 변단면 기둥의 좌굴하중 및 후좌굴 거동 (Buckling Loads and Post-Buckling Behavior of Linear Tapered Columns)

  • 이태은;안대순;이승우;박광규
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.689-696
    • /
    • 2006
  • This paper deals with the geometrical non-linear analyses of the buckled columns. Differential equations governing elasticas of the buckled columns are derived, in which both effects of taper type and shear deformation are included. Three kinds of taper types such as breadth, depth and square tapers are considered. Differential equations are solved numerically to obtain the elasticas and buckling loads of such columns. End constraint of both clamped ends and both hinged ends are considered. The effects of shear deformation on the elastica of the buckled column and buckling load of column are investigated extensively. Experimental studies are presented that complement theoretical results of non-linear responses of the elasticas.

  • PDF

Thermal post-buckling analysis of uniform slender functionally graded material beams

  • Anandrao, K. Sanjay;Gupta, R.K.;Ramchandran, P.;Rao, G. Venkateswara
    • Structural Engineering and Mechanics
    • /
    • 제36권5호
    • /
    • pp.545-560
    • /
    • 2010
  • Two or more distinct materials are combined into a single functionally graded material (FGM) where the microstructural composition and properties change gradually. Thermal post-buckling behavior of uniform slender FGM beams is investigated independently using the classical Rayleigh-Ritz (RR) formulation and the versatile Finite Element Analysis (FEA) formulation developed in this paper. The von-Karman strain-displacement relations are used to account for moderately large deflections of FGM beams. Bending-extension coupling arising due to heterogeneity of material through the thickness is included. Simply supported and clamped beams with axially immovable ends are considered in the present study. Post-buckling load versus deflection curves and buckled mode shapes obtained from both the RR and FEA formulations for different volume fraction exponents show an excellent agreement with the available literature results for simply supported ends. Response of the FGM beam with clamped ends is studied for the first time and the results from both the RR and FEA formulations show a very good agreement. Though the response of the FGM beam could have been studied more accurately by FEA formulation alone, the authors aim to apply the RR formulation is to find an approximate closed form post-buckling solutions for the FGM beams. Further, the use of the RR formulation clearly demonstrates the effect of bending-extension coupling on the post-buckling response of the FGM beams.

일정체적 캔틸레버 기둥의 좌굴하중 및 후좌굴 거동 (Buckling Loads and Post-Buckling Behavio of Cantilever Column with Constant Volume)

  • 이승우;이태은;김권식;이병구
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.935-940
    • /
    • 2006
  • Numerical methods are developed for solving the elastica and buckling load of cantilever column with constant volume, subjected to a compressive end load. The linear, parabolic and sinusoidal tapers with the regular polygon cross-sections are considered, whose material volume and span length are always held constant. The differential equations governing the elastica of buckled column are derived. The Runge-Kutta method is used to integrate the differential equations, and the Regula-Falsi method is used to determine the horizontal deflection at free end and the buckling load, respectively. The numerical methods developed herein for computing the elastica and the buckling loads of the columns are found to be efficient and reliable.

  • PDF

패치로 보강된 구형 복합재료 패널의 후좌굴 거동 및 진동 특성해석 (Post-buckling Behavior and Vibration Characteristics of Patched Reinforced Spherical Composite Panels)

  • 이정진;염찬홍;이인
    • Composites Research
    • /
    • 제14권4호
    • /
    • pp.27-34
    • /
    • 2001
  • 토탈 라그랑지안 방법과 변형율을 가정한 Hellinger-Reissner 원리에 기초한 유한요소법을 이용하여 패치로 보강된 구형 복합재료 쉘의 후좌굴 거동 및 진동 특성을 살펴보았다. 패치 요소는 따로 다른 유한요소를 사용하지 않고 쉘의 중앙면과 다른 기준점을 잡아 두께 변수를 택하여 정식화를 하였다. 비선형 해법으로 원통형 호-길이법을 적용하였고, 후 좌굴 진동은 미소 진폭을 갖는다고 가정하였다. 구형 쉘 패넬에서 패치가 비선형 거동 및 진동수에 미치는 영향을 고찰하였고, 그 결과 패치는 하중지지도를 개선시키킨다. 패치로 보강된 패널의 1차 고유진동수는 등가 패널에 비하여 낮으나, 하중을 받는 경우 1차 고유진동수는 급격히 감소하지 않았다.

  • PDF

Shear-bending interaction strength of locally buckled I-sections

  • El Aghoury, M.;Hanna, M.T.
    • Steel and Composite Structures
    • /
    • 제8권2호
    • /
    • pp.145-158
    • /
    • 2008
  • In slender sections there is a substantial post-buckling strength provided after the formation of local buckling waves. These waves happened due to normal stresses or shear stresses or both. In this study, a numerical investigation of the behavior of slender I-section beams in combined pure bending and shear has been described. The studied cases were assumed to be prevented from lateral torsional buckling. To achieve this aim, a finite element model that simulates the geometric and material nonlinear nature of the problem has been developed. Moreover, the initial geometric imperfections were included in the model. Different flange and web width-thickness ratios as well as web panel aspect ratios have been considered to draw complete set of interaction diagrams. Results reflect the interaction behavior between flange and web in resisting the combined action of moments and shear. In addition, the web panel aspect ratio will not significantly affect the combined ultimate shear-bending strength as well as the post local buckling strength gained by the section. Results are compared with that predicted by both the Eurocode 3 and the American Iron and Steel specifications, AISI-2001. Finally, an empirical interaction equation has been proposed.

국부좌굴된 강구조부재의 비탄성 반복 거동 (Inelastic Cyclic Behavior of Locally Buckled Steel Members)

  • 이은택;송금정
    • 한국강구조학회 논문집
    • /
    • 제17권2호통권75호
    • /
    • pp.139-149
    • /
    • 2005
  • 소성설계에 있어서 국부좌굴 후의 거동은 매우 중요한 고려사항이며, 최종 붕괴상태에 이르는 거동을 설명한다. 지진과 같은 복잡한 하중에 대하여 구조물의 실질적인 신뢰성을 얻기 위해, 국부좌굴 이후의 구조물의 점진적인 소재의 약화와 강성과 강도의 감소, 에너지 소실능력을 평가하여야 한다. 본 연구에서는, two-surface 모델에 근거하여 반복 불비례 하중에서의 국부좌굴 후 거동을 예측하기 위하여 제시된 stress resultant model을 이용하여, 단순화된 국부좌굴해석모델을 제안하였다. 이 모델을 사용한 해석적 모멘트-곡률관계는 일정한 반복 사이클 내에서 실험결과와 적절히 부합하며, 내진설계에 있어 중요한 선형 분포된 에너지 감소를 제안 모델로부터 예측할 수 있다.

일정체적 고정-자유 기둥의 좌굴하중 및 후좌굴 거동 (Buckling Loads and Post-Buckling Behavior of Clamped-Free Columns with Constant Volume)

  • 이병구;오상진;모정만;진태기
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1996년도 가을 학술발표회 논문집
    • /
    • pp.3-10
    • /
    • 1996
  • Numerical methods are developed for solving the buckling loads and the elastica of clamped- free columns of circular cross-section with constant volume. The column model is based rut the Timoshenko beam theory. The Runge-Kutta and Regula-Falsi methods, respectively, are used to solve the governing differential equations and to compute the eigenvalues. Extensive numerical results, including buckling loads, elastica of buckled shapes and effects of shear de-formation, are presented in non-dimensional form for elastic columns whose radius of circular cross-section varies both linearly and parabolically with column length.

  • PDF

On the static stability of nonlocal nanobeams using higher-order beam theories

  • Eltaher, M.A.;Khater, M.E.;Park, S.;Abdel-Rahman, E.;Yavuz, M.
    • Advances in nano research
    • /
    • 제4권1호
    • /
    • pp.51-64
    • /
    • 2016
  • This paper investigates the effects of thermal load and shear force on the buckling of nanobeams. Higher-order shear deformation beam theories are implemented and their predictions of the critical buckling load and post-buckled configurations are compared to those of Euler-Bernoulli and Timoshenko beam theories. The nonlocal Eringen elasticity model is adopted to account a size-dependence at the nano-scale. Analytical closed form solutions for critical buckling loads and post-buckling configurations are derived for proposed beam theories. This would be helpful for those who work in the mechanical analysis of nanobeams especially experimentalists working in the field. Results show that thermal load has a more significant impact on the buckling behavior of simply-supported beams (S-S) than it has on clamped-clamped (C-C) beams. However, the nonlocal effect has more impact on C-C beams that it does on S-S beams. Moreover, it was found that the predictions obtained from Timoshenko beam theory are identical to those obtained using all higher-order shear deformation theories, suggesting that Timoshenko beam theory is sufficient to analyze buckling in nanobeams.