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Abstract
The vibration characteristics of post-buckled laminated composite doubly curved shells are investigated.
The finite element method is used for the analysis of post-buckling and free vibration of post-buckled lam-
inated shells. The geometric non-linear finite element model includes the general non-linear terms in the
strain–displacement relationships. The shell geometry used in the present formulation is derived using an or-
thogonal curvilinear coordinate system. Based on the principle of virtual work the non-linear finite element
equations are derived. Arc-length method is implemented to capture the load–displacement equilibrium
curve. The vibration characteristics of post-buckled shell are performed using tangent stiffness obtained
from the converged deflection. The code is first validated and then employed to generate numerical results.
Parametric studies are performed to analyze the snapping and vibration characteristics. The relationship
between loads and fundamental frequencies and between loads and the corresponding displacements are
determined for various parameters such as thickness ratio and shallowness.
© Koninklijke Brill NV, Leiden, 2009
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1. Introduction

In order to achieve the desired structural design requirements, various laminated
composite shell components are increasingly used in aircrafts, space vehicles and
automotive structures. The aerospace organizations are intensively involved in the
development of advanced composite materials for design, analysis and manufactur-
ing structures in order to reduce the weight and cost while increasing the lifetime
and operational performance. During their service life, those composite shell struc-
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tures may experience large bending deformation resulting in pre-buckling and post-
buckling due to higher external loading and the shells may exhibit snap-through
and snap-back type post-buckling behavior. Under compressive loading the shell
panels have unstable buckling characteristics, called snap-through and snap-back
phenomena. During the snapping phenomenon the dynamic instability may be in-
duced. The vibratory characteristics of post-buckled structures are a problem of
primary importance in many engineering fields, including aerospace applications.
It is well known that the buckling does not mean the ultimate failure of structures.
The laminated plate is still capable of carrying some amount of load without failure
after the buckling point. Particularly, the behavior of doubly curved composite shell
panel is very complicated due to their geometric complexity, high anisotropy, load-
ing and boundary conditions. However, lighter and more efficient structures can be
manufactured to withstand higher design load. Therefore, it is necessary to investi-
gate the post-buckling and snapping behavior of doubly curved shells under higher
mechanical loads. Due to availability of high speed computers, accuracy rather then
simplicity plays a vital rule for design and analysis of complex problems. For the
analysis of geometric non-linear problems, the selection of the strain–displacement
relationship is important. Therefore, in the present study, the strain–displacement
relations employed for the vibration characteristics of pre-/post-buckled composite
shell problems are derived from the three-dimensional theory of elasticity and the
equilibrium equations are generally established using the virtual work principle for
numerical analysis.

Geometric non-linear finite element formulation for the analysis for plates and
shells has been presented by many researchers and scientists. For example, Wood
and Zienkiewicz [1] investigated the non-linear analysis of beams, frames and
arches, in a total Lagrangian co-ordinate system. The non-linear equilibrium equa-
tions are solved using the Newton–Raphson method. Bathe et al. [2] formulated
a finite element method for static and dynamic analysis of structures undergoing
large deformation. The formulation was derived from general principle of con-
tinuum mechanics. A Rayleigh–Ritz approach for the determination of the static
deflection, in-plane stress distribution and natural frequencies of vibration of simply
supported, rectangular plates subject to uni-axial in-plane loads was presented by
Ilanko and Dickinson [3]. An analytical study was conducted by Palazotto and Lin-
nemann [4] to determine the fundamental frequencies and critical buckling loads
for laminated anisotropic circular cylindrical shell panels by using the Galerkin
technique. An analytic method was studied for post-buckling and mode jumping be-
havior of bi-axially compressed composite laminates plate subjecting to bi-axially
compression by Souza [5]. Lee and Lee [6] investigated the post-buckling and
vibration behaviour of thermally buckled anisotropic plates subjected to uniform
temperature change using the von Karman strain–displacement relation and solved
the equilibrium equations using the Newton–Raphson method. Non-linear finite el-
ement equations based on the layerwise displacement theory was investigated by
Oh et al. [7] for thermopiezoelastic analysis of laminated plates. Chen and Yu [8]
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presented a mathematically rigorous approach to investigate the post-buckling re-
sponse and mode jumping of simply-supported laminated composite plates. Teng
and Hong [9] addressed the importance of strain–displacement relations, derived
directly from the three-dimensional theory of elasticity. They presented a complete
set of non-linear strain–displacement relations for shells in the sense that no term
has been neglected based on the judgment of its relative magnitude. Later, the post-
buckling analysis of laminated composite spherical, cylindrical and conoidal shells,
considering the strain–displacement relations in the curvilinear coordinate system
was presented by Kundu and Sinha [10]. Jha and Inman [11] discussed the impor-
tance of geometric non-linearity [9] for analysis of gossamer structures, considering
membrane effects. Crisfield [12] presented arc-length method for the solution of
non-linear problems.

It is observed from the open literature that limited work has been reported
on vibratory characteristics of post-buckled laminated doubly shells. The present
investigation focuses on the vibration characteristics of pre-buckled and post-
buckled laminated composite spherical and cylindrical shells using the finite ele-
ment method. The general geometrically non-linear strain–displacement relations
are derived from the three-dimensional elastic body in the orthogonal curvilinear
coordinate system. So a geometrically non-linear nine noded isoparametric dou-
bly curved laminated shell element is developed. The mathematical formulation
is based on the virtual work equations for a continuum with a total Lagrangian ap-
proach, and the material behavior is assumed to be linear and elastic. The non-linear
equations are solved by the arc-length method and it can handle snap-through and
snap-back behavior. A finite element code in C++ language is written to implement
the above finite element formulation. Parametric studies are carried out for various
thickness ratio and shallowness for laminated spherical and cylindrical shell panels.
The effect of number of layers (n) in [0/90]n laminated shells on vibration behavior
of post-buckled spherical shell is presented.

2. Finite Element Formulation

The shell geometry used in the present formulation is derived using an orthog-
onal curvilinear coordinate system [13], α1 and α2 along the lines of principal
curvatures, and a normal coordinate ζ . The middle surface of the doubly curved
laminated shell is assumed to be the reference surface and is shown in Fig. 1. The
mid-surface which defines the shape of a shell is described by the two Lamε pa-
rameters, A1 and A2, and the two principal radii of the curvatures, R1 and R2.
Consider a general thin laminate of thickness h composed of arbitrary oriented
layers as shown in Fig. 1, with each lamina having different thickness as well as
arbitrary fiber orientation θ with respect to the α1 axis of the coordinate system as
shown in Fig. 2 and laminate configuration shown in Fig. 3.
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Figure 1. Geometry of a laminated doubly curved shell.

Figure 2. Laminate configuration.

Figure 3. Layer details in a laminate.
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2.1. Displacement Model

The displacements at any point can be described as:

u1(α1, α2, ζ ) = u0
1(α1, α2) + ζθ1(α1, α2),

u2(α1, α2, ζ ) = u0
2(α1, α2) + ζθ2(α1, α2), (1)

w(α1, α2, ζ ) = w0(α1, α2),

where u0
1, u

0
2 and w0 are the displacements on the reference surface along the α1, α2

and ζ directions, respectively; θ1 and θ2 are the rotations along the α1 and α2 direc-
tions, respectively.

2.2. Strain–Displacement Relations

The non-linear strain–displacement relations are derived from any three-dimensional
elastic body [14], in an orthogonal curvilinear coordinate system and the first-order
shear deformation theory is considered. The strain–displacement relations are de-
rived in [10] and are expressed as follows:
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γ13 = ε0
5 + θ1,

γ23 = ε0
6 + θ2.

The strain components ε in equation (2) can be separated into two parts, ε0
l and ε0

nl ,

{ε0} = {ε0
l } + {ε0

nl} =
(

[Bl] + 1

2
[Bnl]

)
{δ}, (3)

where [Bl] and [Bnl] are the linear and non-linear strain matrices; and {δ} is the
element nodal displacement vector. The mid-surface strains and curvature terms
are explicitly expressed as follows:
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2.3. Constitutive Relations

It is assumed that the material is elastic. The constitutive relations for a unidirec-
tional lamina with respect to material axes (�α1,�α2) can be written as:

{�σ } = [�Q]{�ε}. (5)

Equation (5) can be written in expanded form as:
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The shear correction factor (ks) is assumed to be 5/6. The off-axis constitutive
relations for kth lamina is:
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where Qij are the transformed coefficients [15]. The force and moment resultants
are obtained by integrating the stresses and their moments through the laminate
thickness as given by

{
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where N11,N22 and N12 are the in-plane force resultants; M11,M22 and M12 are
the moment resultants; Q13 and Q23 are the transverse shear resultants. In compact
form, force and moment resultants can be written as

{F } = [D]{ε}, (9)

where [D] is the elasticity matrix (see Appendix A) and

{F } = {N11 N22 N12 M11 M22 M12 Q13 Q23 }T,
(10)

{ε} = { ε0
11 ε0

22 γ 0
12 κ11 κ22 κ12 γ 0

13 γ 0
23 }T.
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The isoparametric formulation [16] has been used to implement the nine-noded
shell element, where each node has five degrees of freedom, u0

1, u
0
2,w

0, θ1 and θ2.
The displacement components at any point on the mid-surface are assumed as:

u0
1 =

9∑

i=1
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0
1i , u0

2 =
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Niu
0
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0
i ,

(11)
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9∑
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9∑

i=1

Niθ2i .

The above can be expressed in a matrix form given by

{u} = [N]{δ}, (12)

where

{u} = {u0
1 u0

2 w0 θ1 θ2 }T, {δ} = {u0
1i u0

1i w0
i θ1i θ2i }T

(13)

and
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⎤

⎥
⎥⎥
⎦
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, (14)

Ni represents the shape function of ith node of an element.

2.4. Principle of Virtual Work

The equations of motion are derived using the principle of virtual work:

dW = dWint − dWext = 0, (15)

where

dWint =
∫

V

{dε}T{σ }dV

=
∫

V

({dε0
l }T{N} + {dε0
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3
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− I2
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]
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= −{dδ}T[M]{δ̈} + {dδ}T{R}, (17)
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where d is the variation operator, {δ} is the displacement vector, [K1] is the linear
stiffness matrix, [N1] and [N2] are the first and second-order non-linear stiffness
matrices due to large deformation; {R} is the external force vectors:

[Kl] =
∫

A

([Bl]T[D][Bl]
)

dA,

[N1] =
∫

A

([Bl]T[D][Bnl] + [Bnl]T[D][Bl] + [G]T[Sl][G])dA,

(18)

[N2] =
∫

A

([Bnl]T[D][Bnl] + [G]T[Snl][G])dA,

[M] =
∫

A

[N]Tρ̂[N]dA,

and [M], [G] and [S] matrices are expressed in Appendix A.
Substituting the equations (17) and (18) into equation (16), the governing equi-

librium is as follows:

[M]{δ̈} +
(

[K] + 1

2
[N1] + 1

3
[N2]

)
{δ} = {R}. (19)

For the analysis of free vibration of buckled laminated shells, the displacement
vector is assumed to be the sum of time-dependent {δt} and time-independent {δs}
displacement components. The magnitude of time-dependent solution {δt} is small
and the magnitude of the time-independent solution {δs} is large. However, {δs} is
the post-bucking large deflection and the non-linear stiffness matrices are functions
of the time-independent displacement {δs}. The static and dynamic coupled equa-
tions are:

{ψ} =
(

Kl + 1

2
N1(δs) + 1

3
N2(δs)

)
δs − λR = 0, (20)

M{δ̈t} + (
Kl + N1(δs) + N2(δs)

)
δt = 0. (21)

The arc-length method [12] is used to solve non-linear problems, and the incremen-
tal iterative form of equation (21) can be expressed as:

(
Kl + N1(δs) + N2(δs)

){dδs}i+1 = λ{R}i − {F }i , (22)

where {F } is the force vector due to internal stresses due to loading. After solving
equation (23), the updated displacements vector is determined as follows:

{δs}(i+1)
n+1 = {δs}(i)n+1 + {dδ}(i)n . (23)

After obtaining the converged post-buckling deflection, the vibration analysis is
carried out by solving a generalized eigenvalue problem as,

[(
Kl + N1(δs) + N2(δs)

)
δt − ω2M

]{δt} = 0. (24)

Typical cylindrical and spherical shell panels are shown in Figs 4 and 5, respec-
tively. The shell panel dimensions of a and b are along the α1 and α2 directions,
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Figure 4. A typical cylindrical panel.

Figure 5. A typical spherical panel.

respectively. The boundary conditions used for all simply supported are as follows:

u0
2 = w = θ2 = 0, for α1 = 0, a,

(25)
u0

1 = w = θ1 = 0, for α2 = 0, b.

The non-dimensional frequency is defined as:

� = ω
a2

h

√
ρ

E22
, (26)

where ω is the fundamental frequency, ρ is the mass density of the laminate,
E22 is the Young’s modulus. The vibration analysis on the region with non-positive
stiffness matrix is skipped. A finite element code in C++ language is written to im-
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plement the above finite element formulation. The code is first validated and then
employed to generate numerical results.

3. Results and Discussion

3.1. Comparison of Results

To evaluate the efficiency and validity of the present formulation, a variety of snap-
ping and free vibration problems are considered.

3.1.1. Isotropic Cylindrical Panel
The post-buckling behavior of a hinged isotropic cylindrical panel under action of
a concentrated point load is considered. The geometric and material properties of
the shell are a = b = 508 mm, R = 2540 mm, h = 6.35 mm, E = 3103 N/mm2 and
ν = 0.3. Due to the symmetric nature of the problem, only one-quarter of the panel
is considered for the finite element discretization. The present non-linear central
load–deflection curves are compared with those obtained by Sabir and Djoudi [17]
and Crisfield [12] and are presented in Fig. 6. The present results compare well with
the published results.

3.1.2. Laminated Cylindrical Panel
Next, snap-through behavior of cross-ply laminated cylindrical shell panels sub-
jected to a central point load is analyzed. The following two different laminates
are considered: [90/0/90] and [0/90/0]. The geometric and material data and also
the boundary conditions of the cylindrical panel are the same as in the previously

Figure 6. Snap-through response of isotropic cylindrical panel.
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Figure 7. Snap-through response of laminated cylindrical panels.

discussed problem. The present results are compared with the results obtained by
Kim and Voyiadjis [18] for the [0/90/0] laminate. The finite element used by Kim
and Voyiadjis [18] is an eight-noded shell element with six degrees of freedom per
node. For the [90/0/90] laminate, the present results are compared with the results
obtained by Kim and Voyiadjis [18] and Saigal et al. [19]. All the pre/post-buckling
load–deflection curves are shown in Fig. 7. The results given by Saigal et al. [19] are
based on a four-nodded non-linear shell element with twelve degrees of freedom.
The present results and the published results are in very good agreement.

3.1.3. Free Vibration Analysis
A simply supported square plate is considered. The results are predicted by the
present formulation for different modulus ratios are compared with the 3D solution
of Noor [20], Chandrashekhara [21] and classical plate theory results are shown in
Table 1. Table 2 shows the fundamental frequencies of clamped [0/90] laminated
spherical shell panel (a = b = 10.0 in, h = 0.1 in). The material properties used in
this example are as follows:

E11 = 21 × 106 psi, E22 = 1.4 × 106 psi, G12 = G13 = 0.6 × 106 psi,

G23 = 0.5 × 106 psi, ν12 = 0.3, ρ = 0.0001475 lb/in3.

The present results are in good agreement with the published results as shown in
Tables 1 and 2.

3.2. Snapping and Vibration Characteristics of Cylindrical Shell Panel

In order to perform the convergence study, a simply supported symmetric [0/90/
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Table 1.
Effect of degree of orthotropy on the non-dimensional fundamental frequencies �ω = ω(ρh2/E22)1/2

of [0/90/0/90] simply supported square plate

E11/E22 Classical plate theory [21] Noor [20] Chandashekhara [21] Present

3 0.28676 0.26182 0.26348 0.25787
10 0.38877 0.32578 0.34026 0.32434
20 0.49907 0.37622 0.40198 0.37992
30 0.58900 0.40660 0.43954 0.41476

Table 2.
Fundamental frequencies (Hz) of clamped [0/90] spherical
shell panel

R/a Chandashekhara [21] Present

10 590.59 590.29
20 380.27 380.29
30 325.46 325.56
40 303.84 303.99

90/0] laminated cylindrical panel is subjected to a point load at the center of the
panel. The geometric properties are as follows:

a = b = 100 mm, a/h = 150, R/a = 5.

The material properties are considered as:

E11 = 181 GPa, E22 = 10.3 GPa, G12 = G13 = 7.17 GPa,

G23 = 3.58 GPa, ν12 = 0.28, ρ = 1600 kg/m3.

The cylindrical panel is discretized into different mesh sizes (2 × 2,4 × 4,8 ×
8,10 × 10 and 12 × 12). The vibration characteristics of pre/post-buckled panels
are shown in Fig. 8. It is observed that the vibration characteristics of post-buckled
shell panels having mesh size (8 × 8,10 × 10 and 12 × 12) have nearly the same
results. The present numerical analysis is carried out for full composite shell panel
having mesh size (8 × 8).

The effects of thickness on post-buckling behavior of a simply supported cylin-
drical panel (a = b = 100 mm and R/a = 5) are considered for different values of
a/h, such as 100, 125, 150, 175 and 200. The lamination scheme is anti-symmetric
cross-ply [0/90]2 with four layers. The non-linear load–deflection curves are shown
in Fig. 9. It is observed that as the thickness of the shell panel decreases the
limit point load for buckling decreases. A thicker shell undergoes post-buckling at
a higher limit point load compare to the thinner shell, and the thinner shell exhibits
snap-through and snap-back phenomena. At the limit point, the determinate of the
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Figure 8. Convergence study of [0/90/90/0] laminated cylindrical panel.

Figure 9. Effect of thickness ratio on snapping behavior of [0/90]2 laminated cylindrical panel.

stiffness matrix is zero. After snap-through, the load carrying capacity increases
due to the post-buckling strength of the shell. The snapping behavior is observed
due to the sudden transfer of energy from membrane to bending component. This
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Figure 10. Effect of thickness ratio on vibration characteristics of [0/90]2 laminated cylindrical panel.

phenomenon is dynamic in nature. The vibration characteristics of a cylindrical
panel for different a/h values are shown in Fig. 10. The fundamental frequency
response can be separated into pre-buckling and post-buckling regions and the vi-
bration analysis on the region with non-positive stiffness is skipped. It is observed
that the frequencies in the pre-snapping region decrease with the increase in load.
But after snap-through, the frequencies increase as the load increases, due to the
geometric non-linearity. The rate of change in fundamental frequency depends on
the thickness of the shell. The snapping phenomena affect the vibration character-
istics as well as static deformation.

The effects of radius of curvature of an anti-symmetric [0/90]2 laminated cylin-
drical panel (a = b = 100 mm and a/h = 150) on snapping behavior are shown
in Fig. 11. Various R/a values are considered, such as 5, 6, 7, 8, 9 and 10. It is
observed that, as the radius of curvature increases, the limit point load decreases. In
the case of a curved panel, both bending and membrane stiffness are responsible
to carry loads and membrane stiffness dominant bending stiffness before snap-
through occurs. With the increase in shallowness, the snapping phenomena appear
and the membrane stiffness dominant bending stiffness due to decrease in curvature.
For R/a = 5, the snapping phenomenon is more significant compared with higher
values of R/a (6, 7, 8, 9 and 10). Figure 12 shows the variation of fundamental fre-
quencies with respect to the applied loads. The fundamental frequencies decrease
in the pre-buckling region and increase in post-buckling region. The rate of change
of fundamental frequency depends on the radius of curvature of the shell panel. For
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Figure 11. Effect of shallowness on snapping behavior of [0/90]2 laminated cylindrical panel.

Figure 12. Effect of shallowness on vibration characteristics of [0/90]2 laminated cylindrical panel.

R/a = 5 there is a sudden increase in frequency due to the snapping behavior of
the panel. For higher value of R/a, the fundamental frequency curve has a dip.
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Figure 13. Effect of thickness ratio on snapping behavior of [0/90]2 laminated spherical panel.

3.3. Snapping and Vibration Characteristics of Spherical Shell Panel

A simply supported spherical panel subjected to a point load at the center is ana-
lyzed for the post-buckling and vibration analysis. The material properties are same
as the cylindrical shell discussed in the earlier section. The following material prop-
erties are used:

a = b = 100.0 mm, R1 = R2 = 500 mm.

To investigate the effect of thickness ratio (a/h), different thickness ratios such
as a/h = 100,125,150,175 and 200 are considered. The lamination scheme is
anti-symmetric cross-ply [0/90]2 with four layers. The thickness effects on post-
buckling behaviour of spherical panel are shown in Fig. 13. It is observed that as
the thickness of the panel decreases the limit point load for buckling decreases.
Figure 14 shows the vibration characteristics of cylindrical panels of different a/h

values. Snap-through phenomena were observed at different point loads for differ-
ent a/h values. A spherical shell shows a higher limit point load compared to the
cylindrical panel due to the curvatures on both sides of the spherical panel.

The effects of shallowness of a doubly curved shell panel (a = b = 100 mm,
a/h = 150) are considered next. Various R/a value are considered, such as 5, 6,
7, 8, 9, 10, 15 and 20. The load–deflection curves are shown in Fig. 15. It is ob-
served that, as the radius of curvature increases, the limit point load decreases. For
R/a = 5, the snapping phenomenon is more significant compared with higher val-
ues of R/a (6, 7, 8, 9, 10, 15 and 20). Figure 16 shows the variation of fundamental
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Figure 14. Effect of thickness ratio on vibration characteristics of [0/90]2 laminated spherical panel.

Figure 15. Effect of shallowness on snapping behavior of [0/90]2 laminated spherical panel.

frequencies with respect to the applied loads. The fundamental frequencies decrease
in the pre-buckling region and increase in the post-buckling region.
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Figure 16. Effect of shallowness on vibration characteristics of [0/90]2 laminated spherical panel.

Figure 17. Effect of number of layers on snapping behavior of [0/90]n laminated spherical panel.

A simply supported [0/90]n laminated spherical panel is considered for n =
1,2,3,4,5 and 25. The load–deflection curves are shown in Fig. 17 and the fre-
quency responses with respect to the applied loads are shown in Fig. 18. The limit
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Figure 18. Effect of number of layer on vibration characteristics of [0/90]n laminated spherical panel.

point load for n = 1 is found to be lower compared to the higher values of n.
As the number of layers (n) increases, the limit point load increases due to the
higher coupling effects between bending and extension. However, it is observed
that there are very small differences in limit point loads and fundamental frequen-
cies for n = 3,4,5 and 25. When the value of n is increased beyond 4, the coupling
stiffness between bending and extension converge.

4. Conclusion

The non-linear finite element method has been employed to examine the vibration
characteristics of pre- and post-buckled laminated composite doubly curved shells:

1. The strain–displacement relations used are of the general form. If the linear in-
plane membrane strains are much smaller then out-of-plane rotation about the
normal to the reference surface, then the present strain–displacement relations
can be reduced to Sanders and Donnell non-linear strains.

2. Both deep and shallow shell surfaces can be modeled using nine-noded doubly
curved shell element and the non-linear finite element formulation is presented
in a curvilinear coordinates system. Different types of shells, such as spheri-
cal, cylindrical, conical, hyperbolic, parabolic and other types of shells can be
analyzed.

3. Arc-length method is implemented to capture the snapping phenomenon accu-
rately. The vibration characteristics of post-buckled shell are performed using



40 C. K. Kundu, J.-H. Han / Advanced Composite Materials 18 (2009) 21–42

tangent stiffness obtained from the converged deflection. Good agreement is
observed between the present and published results.

4. The fundamental frequency response is separated into pre-buckling and post-
buckling regions. It is observed that the frequency in the pre-snapping region
decreases with increase in load. But after snap-through, the frequency increases
with increase in load, due to the geometric non-linearity.

5. The coupling between bending and extension in anti-symmetric laminated
shells play an important role in the study of the snapping and vibration char-
acteristics. Therefore, the present results represent valuable information for the
understanding of the dynamics of complex thin-walled structures, which exhibit
post-buckling behavior.
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Appendix

The elasticity matrix is as follows:

[D] =

⎡

⎢⎢⎢
⎢⎢⎢⎢
⎢⎢
⎣

A11
A12 A22 Sym
A16 A26 A66
B11 B12 B16 D11
B12 B22 B26 D12 D22
B16 B26 B66 D16 D26 D66
0 0 0 0 0 0 A44
0 0 0 0 0 0 A45 A55

⎤

⎥⎥⎥
⎥⎥⎥⎥
⎥⎥
⎦

, (A.1)

where Aij ,Bij and Dij are the extension, bending-stretching coupling, bending
terms, respectively and are as expressed as follows:

Aij =
N∑

k=1

[Qij ]k(ζk − ζk−1), i, j = 1,2,6,

Bij = 1

2

N∑

k=1

[Qij ]k(ζ 2
k − ζ 2

k−1), i, j = 1,2,6,

(A.2)

Dij = 1

3

N∑

k=1

[Qij ]k(ζ 3
k − ζ 3

k−1), i, j = 1,2,6,

Aij =
N∑

k=1

[Qij ]k(ζk − ζk−1), i, j = 4,5.

The detailed component matrices of stiffness matrices are presented as follows:
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The mass stiffness matrix is as follows:

[M] =
∫

A

[N]Tρ̂[N]dA, (A.3)

where [N ] is expressed in equation (14).

[ρ̂] =

⎡

⎢⎢
⎢
⎣

I1 0 0 I2 0
0 I1 0 0 I2
0 0 I1 0 0
I2 0 0 I3 0
0 I2 0 0 I3

⎤

⎥⎥
⎥
⎦

, (A.4)

where (I1, I2, I3) = ∫ h/2
−h/2 ρ(1, ζ, ζ 2)dζ .

[G] =

⎡

⎢
⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢⎢
⎣

1

A1

∂Ni

∂α1

Ni

A1A2

∂A1

∂α2

Ni

R1
0 0

1

A2

∂Ni

∂α2
− Ni

A1A2

∂A2

∂α1
0 0 0

− Ni

A1A2

∂A1

∂α2

1

A1

∂Ni

∂α1
0 0 0

Ni

A1A2

∂A2

∂α1

1

A2

∂Ni

∂α2

Ni

R2
0 0

−Ni

R1
0

1

A

∂Ni

∂α1
0 0

0 −Ni

R2

1

B

∂Ni

∂α2
0 0

⎤

⎥
⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥⎥
⎦

i=1,2,...,9

, (A.5)

[S] =

⎡

⎢⎢
⎢⎢⎢
⎣

N11 N12 0 0 0 0
N12 N22 0 0 0 0

0 0 N11 N12 0 0
0 0 N12 N22 0 0
0 0 0 0 N11 N12
0 0 0 0 N12 N22

⎤

⎥⎥
⎥⎥⎥
⎦

, (A.6)

where Nij are the force resultants expressed in equation (8).


