• Title/Summary/Keyword: post processing

Search Result 1,747, Processing Time 0.028 seconds

AN EFFICIENT IMPLEMENTATION OF BDM MIXED METHODS FOR SECOND ORDER ELLIPTIC PROBLEMS

  • Kim, J.H.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.7 no.2
    • /
    • pp.95-111
    • /
    • 2003
  • BDM mixed methods are obtained for a good approximation of velocity for flow equations. In this paper, we study an implementation issue of solving the algebraic system arising from the BDM mixed finite elements. First we discuss post-processing based on the use of Lagrange multipliers to enforce interelement continuity. Furthermore, we establish an equivalence between given mixed methods and projection finite element methods developed by Chen. Finally, we present the implementation of the first order BDM on rectangular grids and show it is as simple as solving the pressure equation.

  • PDF

PROPER ORTHOGONAL DECOMPOSITION OF DISCONTINUOUS SOLUTIONS WITH THE GEGENBAUER POST-PROCESSING

  • SHIN, BYEONG-CHUN;JUNG, JAE-HUN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.23 no.4
    • /
    • pp.301-327
    • /
    • 2019
  • The proper orthogonal decomposition (POD) method for time-dependent problems significantly reduces the computational time as it reduces the original problem to the lower dimensional space. Even a higher degree of reduction can be reached if the solution is smooth in space and time. However, if the solution is discontinuous and the discontinuity is parameterized e.g. with time, the POD approximations are not accurate in the reduced space due to the lack of ability to represent the discontinuous solution as a finite linear combination of smooth bases. In this paper, we propose to post-process the sample solutions and re-initialize the POD approximations to deal with discontinuous solutions and provide accurate approximations while the computational time is reduced. For the post-processing, we use the Gegenbauer reconstruction method. Then we regularize the Gegenbauer reconstruction for the construction of POD bases. With the constructed POD bases, we solve the given PDE in the reduced space. For the POD approximation, we re-initialize the POD solution so that the post-processed sample solution is used as the initial condition at each sampling time. As a proof-of-concept, we solve both one-dimensional linear and nonlinear hyperbolic problems. The numerical results show that the proposed method is efficient and accurate.

A Study on Image Processing of Tree Discharges for Insulation Destructive Prediction (절연파괴 예측을 위한 트리방전의 영상처리에 관한 연구)

  • 오무송;김태성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.1
    • /
    • pp.26-33
    • /
    • 2001
  • The proposed system was composed of pre-processor which was executing binary/high-pass filtering and post-processor which ranged from statistic data to prediction. In post-processor work, step one was filter process of image, step two was image recognition, and step three was destruction degree/time prediction. After these processing, we could predict image of the last destruction timestamp. This research was produced variation value according to growth of tree pattern. This result showed improved correction, when this research was applied image Processing. Pre-processing step of original image had good result binary work after high pas- filter execution. In the case of using partial discharge of the image, our research could predict the last destruction timestamp. By means of experimental data, this prediction system was acquired $\pm$3.2% error range.

  • PDF

Automatic Coin Calculation System using Circular Hough Transform and Post-processing Techniques (원형 Hough 변환 및 후처리기법을 이용한 동전 자동 계산 시스템)

  • Chae, S.;Jun, Kyungkoo
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.4
    • /
    • pp.413-419
    • /
    • 2014
  • In this paper, we develop an automatic coin calculation system by using digital image processing. Existing schemes have the problem that is not able to exclude non-circular shape from the calculation. We propose a method to detect only coins which have circular form by applying the circular Hough transform(CHT). However, the CHT has the drawback that detects multiple circles even for just one coin because of shadow noise, the patterns on coins, and non-circular edge detection. We propose a post processing algorithm to overcome these limitations. The proposed system was implemented and successfully calculated the coin amount in the case that non-circular objects are mixed with coins.

Development of Real Time Pitch Tracer for Training of Musical Tune (음정 교정을 위한 실시간 Pitch Tracer의 개발)

  • Jung, Young-Chul;Choi, Doo-Il;Cho, Woo-Yeon
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.529-532
    • /
    • 2002
  • This research treated development of real time pitch tracer for training of musical tune of speech signal and pre-processing and post-processing technics were proposed to get higher accuracy in extraction of pitch. Autocorrelation Function was used to get pitch frequency from 64Hz to 980Hz in real time. Half Rectifier method and Envelop extraction method as a pre-processing was used to get higher accuracy in pitch detection, and improved results were obtained on noised speech signal. Post-processing method using periodicity of Autocorrelation was proposed to get higher accuracy in the high frequency region.

  • PDF

A Development of Unicode-based Multi-lingual Namecard Recognizer (Unicode 기반 다국어 명함인식기 개발)

  • Jang, Dong-Hyeub;Lee, Jae-Hong
    • The KIPS Transactions:PartB
    • /
    • v.16B no.2
    • /
    • pp.117-122
    • /
    • 2009
  • We developed a multi-lingual namecard recognizer for building up a global client management systems. At first, we created the Unicode-based character image database for character recognition and learning of multi languages, and applied many color image processing techniques to get more correct data for namecard images which were acquired by various input devices. And by applying multi-layer perceptron neural network, individual character recognition applied for language types, and post-processing utilizing keyword databases made for individual languages, we increased a recognition rate for multi-lingual namecards.

The Design and Test/valuation of GPS Translator Processing System (GPS 중계기 후처리 장비(TPS) 개발 및 시험평가)

  • 강설묵;이상정
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.49-58
    • /
    • 2003
  • Compared with generic GPS receiver, post-processing software GPS receiver has many advantages for high dynamic vehicle tracking. It has the advantage of the application of various tracking algorithms and aiding schemes. The post-processing system observes the carrier phase measurement data from the recorded GPS signals, detects and isolates the cycle slip. The observed carrier phase data and the raw data of the reference station are processed by carrier phase DGPS scheme. And the integer ambiguity resolution algorithm is used for resolving single frequency carrier phase ambiguity. The results of static and real flight test are presented and show that the proposed GPS translator processing system satisfies submeter accuracy.

A Study on Two-Dimensional Variational Mode Decomposition Applied to Electrical Resistivity Tomography

  • Sanchez, Felipe Alberto Solano;Khambampati, Anil Kumar;Kim, Kyung Youn
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.475-482
    • /
    • 2022
  • Signal pre-processing and post-processing are some areas of study around electrical resistance tomography due to the low spatial resolution of pixel-based reconstructed images. In addition, methods that improve integrity and noise reduction are candidates for application in ERT. Lately, formulations of image processing methods provide new implementations and studies to improve the response against noise. For example, compact variational mode decomposition has recently shown good performance in image decomposition and segmentation. The results from this first approach of C-VMD to ERT show an improvement due to image segmentation, providing filtering of noise in the background and location of the target.

Abdominal Digital Radiography with a Novel Post-Processing Technique: Phantom and Patient Studies (새로운 후처리 기술을 이용한 복부 디지털 방사선 촬영: 팬텀과 환자 연구)

  • Hyein Kang;Eun Sun Lee;Hyun Jeong Park;Byung Kwan Park;Jae Yong Park;Suk-Won Suh
    • Journal of the Korean Society of Radiology
    • /
    • v.81 no.4
    • /
    • pp.920-932
    • /
    • 2020
  • Purpose The aim of this study was to evaluate the diagnostic image quality of low dose abdominal digital radiography processed with a new post-processing technique. Materials and Methods Abdominal radiographs from phantom pilot studies were post-processed by the novel and conventional post-processing methods of our institution; the proper dose for the subsequent patient study of 49 subjects was determined by comparing image quality of the two preceding studies. Two radiographs of each patient were taken using the conventional and derived dose protocols with the proposed post-processing method. The image details and quality were evaluated by two radiologists. Results The radiation dose for the patient study was derived to be half of the conventional method. Overall half-dose image quality with the proposed method was significantly higher than that of the conventional method (p < 0.05) with moderate inter-rater agreement (κ = 0.60, 0.47). Conclusion By applying the new post-processing technique, half-dose abdominal digital radiography can demonstrate feasible image quality compared to the full-dose images.

Computer vision and deep learning-based post-earthquake intelligent assessment of engineering structures: Technological status and challenges

  • T. Jin;X.W. Ye;W.M. Que;S.Y. Ma
    • Smart Structures and Systems
    • /
    • v.31 no.4
    • /
    • pp.311-323
    • /
    • 2023
  • Ever since ancient times, earthquakes have been a major threat to the civil infrastructures and the safety of human beings. The majority of casualties in earthquake disasters are caused by the damaged civil infrastructures but not by the earthquake itself. Therefore, the efficient and accurate post-earthquake assessment of the conditions of structural damage has been an urgent need for human society. Traditional ways for post-earthquake structural assessment rely heavily on field investigation by experienced experts, yet, it is inevitably subjective and inefficient. Structural response data are also applied to assess the damage; however, it requires mounted sensor networks in advance and it is not intuitional. As many types of damaged states of structures are visible, computer vision-based post-earthquake structural assessment has attracted great attention among the engineers and scholars. With the development of image acquisition sensors, computing resources and deep learning algorithms, deep learning-based post-earthquake structural assessment has gradually shown potential in dealing with image acquisition and processing tasks. This paper comprehensively reviews the state-of-the-art studies of deep learning-based post-earthquake structural assessment in recent years. The conventional way of image processing and machine learning-based structural assessment are presented briefly. The workflow of the methodology for computer vision and deep learning-based post-earthquake structural assessment was introduced. Then, applications of assessment for multiple civil infrastructures are presented in detail. Finally, the challenges of current studies are summarized for reference in future works to improve the efficiency, robustness and accuracy in this field.