Abstract
We developed a multi-lingual namecard recognizer for building up a global client management systems. At first, we created the Unicode-based character image database for character recognition and learning of multi languages, and applied many color image processing techniques to get more correct data for namecard images which were acquired by various input devices. And by applying multi-layer perceptron neural network, individual character recognition applied for language types, and post-processing utilizing keyword databases made for individual languages, we increased a recognition rate for multi-lingual namecards.
명함을 이용한 전세계적인 고객 관리 시스템을 구축하기 위해 다국어 명함인식기를 개발하였다. 먼저 다양한 언어의 문자인식 및 학습을 위해 Unicode 기반 문자 이미지 DB를 구축하였으며, 다양한 입력 장치를 통해 획득한 명함 영상에 대하여 정확한 데이터를 얻기 위한 다양한 컬러영상 처리 기술이 적용되었다. 다음에 다층 퍼셉트론 신경망, 언어 유형별 개별 문자인식, 각 언어별 명함에 사용된 필드별 키워드 DB를 이용한 후처리를 적용하여 명함 인식률을 향상시켰다.