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ABSTRACT. The proper orthogonal decomposition (POD) method for time-dependent prob-
lems significantly reduces the computational time as it reduces the original problem to the
lower dimensional space. Even a higher degree of reduction can be reached if the solution is
smooth in space and time. However, if the solution is discontinuous and the discontinuity is
parameterized e.g. with time, the POD approximations are not accurate in the reduced space
due to the lack of ability to represent the discontinuous solution as a finite linear combination of
smooth bases. In this paper, we propose to post-process the sample solutions and re-initialize
the POD approximations to deal with discontinuous solutions and provide accurate approxima-
tions while the computational time is reduced. For the post-processing, we use the Gegenbauer
reconstruction method. Then we regularize the Gegenbauer reconstruction for the construction
of POD bases. With the constructed POD bases, we solve the given PDE in the reduced space.
For the POD approximation, we re-initialize the POD solution so that the post-processed sam-
ple solution is used as the initial condition at each sampling time. As a proof-of-concept, we
solve both one-dimensional linear and nonlinear hyperbolic problems. The numerical results
show that the proposed method is efficient and accurate.

1. INTRODUCTION

Despite recent advances in computing power it is still a challenging task to approximate
real world problems in real time. Real world problems are stochastic in nature and multiple
parameters with fine spatial and temporal steps increase the computational complexity expo-
nentially. Reduced-order models (ROMs) help to reduce the computational complexity and
help to calculate approximations within a reasonable timeframe. The reader is referred to [1], a
special issue on ROMs for recent progresses in ROMs. The proper orthogonal decomposition
(POD) method is one of the ROMs. The POD method has been intensively developed in recent
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decades and used in various applications. The reader is also referred to [2, 3, 4, 5, 6, 7, 8, 9, 10]
and references therein for the details of POD methods and related subjects.

The POD method for time-dependent partial differential equations (PDEs) is composed of
three major steps to calculate POD approximations. The first step is to construct the sample
space whose elements are individual solutions so-called the snapshots to the given PDE, col-
lected at certain time intervals. Each solution in the sample space is represented as a vector
constituting a sample matrix. Here note that the snapshots can be obtained using every solution
obtained when solving the PDE (fine-time scale) or selectively among all solutions at certain
sampling time steps (coarse-time scale). The second step is to find the ordered orthonormal
basis set known as the POD basis set that can represent the collected sample solutions as a
linear combination of POD bases. The last step is to approximate the given PDE in the reduced
space. The element in the reduced space, also a vector, is mapped to the solution defined in
the original space. If the solutions to the given PDE are smooth in space and time, the sample
space obtained from the first step becomes a smooth manifold and it can be approximated with
a small number of the POD bases obtained in the second step. The smoother the sample space
is the smaller the number of the POD bases is needed to approximate the samples to a certain
degree of accuracy. With the singular value decomposition (SVD) of the sample matrix, the
reduction is done by truncating the singular values if they are smaller than the given tolerance
level. The error of the approximation of the samples with the POD bases is then computed by
the total measure of the truncated singular values. If the sample space is smooth the number of
the non-vanishing singular values becomes small by the truncation. Accordingly if the sample
space is smooth the error becomes small by the truncation and the number of the POD bases
required for the approximation is also reduced. Then the reduction can decrease significantly
the computational complexity that the original problem has.

If the sample solutions are discontinuous and the discontinuity is parameterized e.g. with
time, however, the same degree of reduction as in the smooth case may not be reachable. This
is due to the lack of ability for the POD bases to represent the discontinuous samples. Fur-
thermore, if the solution is discontinuous any high order approximation of the solution suffers
from the Gibbs phenomenon. These oscillations, known as the Gibbs oscillations, contained in
the samples make the POD bases oscillatory. Several methods have been developed to remedy
this problem. These remedies mostly modify the PDE solver. For example, in [11] a new type
of Petrov-Galerkin method was developed to deal with the discontinuous solutions to nonlin-
ear hyperbolic equations for POD approximations. The idea of the developed Petrov-Galerkin
method is to impose the diffusion term in the ROM naturally so that the Gibbs oscillations are
diminished in the reduced space.

In this paper, we present an efficient and simpler way of dealing with the discontinuous
solutions for the POD approximation instead of modifying the PDE solver. The main idea
of the proposed method is to improve the quality of the collected sample solutions with post-
processing and re-initialize the POD approximations when the PDE is solved in the reduced
space. For the post-processing, we adopt the Gegenbauer reconstruction method. The recon-
struction is given as a piecewise Gegenbauer polynomial. The obtained piecewise polynomial
reconstruction is uniformly convergent up to the singularity [12, 13]. For more details the
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reader is referred to a series of papers by Gottlieb and his co-workers [14, 15, 16, 12, 13]. Our
proposed method is to first reconstruct the oscillatory sample solutions with the Gegenbauer
reconstruction method so that the reconstruction is close to the exact solution and well pre-
serves the discontinuity. Then the reconstructed solution is regularized near the discontinuity.
Based on the post-processed samples, the POD bases are constructed. The given PDE is then
solved in the reduced space with the POD bases. Although the post-processed samples are now
smooth, the solutions in the reduced space are soon to be discontinuous according to the PDE
and the reduction does not guarantee the alleviation of the Gibbs oscillations. To take advan-
tage of the post-processed samples that are free of oscillations we use the re-initialization when
the PDE is solved in the reduced space in a way that the post-processed samples are used as the
initial condition at each sampling time. The re-initialization is necessary. Particularly the POD
solutions become inaccurate with time without the re-initialization. Since the re-initialization
uses the post-processed sample solutions, no extra computational work is needed for the POD
approximations. This is explained with examples in Section 5.3.1.

As a proof-of-concept, we solve the linear and nonlinear hyperbolic problems which have
the discontinuous initial condition or develop discontinuities with time. For the numerical
approximation we use the Chebyshev spectral collocation method with the spectral filtering.
Numerical results presented in this paper show that the proposed method yields reasonably
accurate POD approximations while the computational time is reduced significantly.

The paper is composed of the following sections. In Section 2, we briefly explain the POD
method. In Section 3, we explain the POD collocation method for hyperbolic problems with the
Chebyshev collocation method. In Section 4, the proposed method is explained. The proposed
method is composed of four steps; 1) Gegenbauer reconstruction, 2) Regularization, 3) Re-
projection and 4) Re-initialization. In Section 5, three numerical examples are provided. In
Section 6, a brief conclusion and our future research are provided.

2. PROPER ORTHOGONAL DECOMPOSITION

The POD method is composed of the following three steps [8]. The first step is to collect
the sample solutions based on which the POD bases are constructed. In this work, we assume
that the sample solutions are real and they are collected sparsely including the initial and final
solutions. Let ui be the sample vector valued solutions collected at the time of t = ti. The
vectors, ui, are also called snapshots. We make ui be column vectors whose size is N + 1.
Suppose that we have m number of snapshots. Let X ∈ R(N+1)×m be the matrix whose
columns are ui, i.e. X = [u1 u2 · · · um]. The second step is to construct a set of orthonormal
bases vk with which each sample solution ui is approximated by a finite linear combination of
vk, ui ≈ ũi =

∑p
k=1 dikvk in the sense that the error E(p) =

∑m
i=1 ||ui − ũi||2 is minimized.

For the orthonormal bases, the SVD of X is carried out such that X = V ΣUT where V ∈
R(N+1)×(N+1) and U ∈ Rm×m are orthonormal matrices and Σ ∈ R(N+1)×m is the diagonal
matrix whose elements are the singular values of X , σ1 ≥ σ2 ≥ · · ·σr > σr+1 = · · · = σm =
0 where r = rank(X) ≤ min{N + 1,m}. If we let di be the column vectors of ΣUT , then we
have ui = V di, i = 1, · · · ,m. Thus we know that we can choose vi as the orthonormal bases
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that we looked for and the total number of expansion for ui is r and we call vi the POD basis.
If we choose those vi for p ≤ m, then the set of vi (1 ≤ i ≤ p) is called the POD basis of
order p. Denote by Vp the matrix composed of the first p column vectors of V . Then the error
E(p) is given by E(p) =

∑r
i=p+1 σ

2
i . Thus we know that with the choice of vi as the POD

basis, the smaller σp+1 is, the smaller the error E(p) is. If X is composed of vector values
for smooth solutions in space, then the singular values of σi decay fast with i and the sample
is approximated with a small number of the POD bases with a certain degree of accuracy. In
practice we decide the value of p such that σp+1 ≤ εp where εp is a small tolerance which is
determined by users before the POD approximation. The last step is to reduce the original space
with the POD bases. Let v be a solution sought. The reduction is done by the transformation
of v to w = V T

p v. Then the dimension of the original space of v is reduced to p.

3. POD COLLOCATION FOR HYPERBOLIC CONSERVATION LAWS

We consider the following one-dimensional hyperbolic conservation laws

ut + O · F (u) = 0, (3.1)

with the state vector u ≡ u(x, t) : Ω × I → Rd for the time interval I := (0, T ] for some
T > 0 and an open bounded domain Ω ⊂ R. F (u) := (f1(u), · · · , fd(u)) is the flux function.
Suppose that the initial condition u(x, 0) = u0(x) is given. The initial condition can be either
smooth or discontinuous.

We adopt the spectral collocation method for the numerical solution to Eq. (3.1). The
proposed method in this paper, however, is applicable to other numerical methods dealing
with discontinuous problems. For example, one can use the spectral collocation and radial
basis function (RBF) methods for the interface problem [17] in order to approximate the POD
solutions of discontinuous problems.

To explain the POD method with the spectral collocation method, consider the scalar hy-
perbolic problem of Eq. (3.1) in x ∈ [−1, 1] with the condition of ∂F/∂u > 0 without loss
of generality. In general, the sign is checked at each boundary and the boundary condition is
applied according to the sign of ∂F/∂u. And suppose that the boundary condition is given by

u(x, t) = h(t), x = −1.

We seek a polynomial solution uN (x, t) to u(x, t) in a polynomial space of degree at most N
such that the residual vanishes on the Chebyshev-Gauss-Lobatto (CGL) points xj = − cos(πj/N),
j = 0, 1 · · · , N , i.e.,

∂uN (x, t)

∂ t
+

(
∂

∂x
INF (uN (x, t))

)
= 0

where IN is the interpolation operator associated with the CGL points. Note that since we
are using the Chebyshev spectral method, IN ∂

∂xIN = ∂
∂xIN . The solution uN (x, t) can be
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represented by the Chebyshev polynomial expansion

uN (x, t) =
N∑
l=0

ûl(t)Tl(x),

where Tl(x) are the Chebyshev polynomials and ûl are the expansion coefficients. Using the
boundary condition of uN (x0, t) = h(t) let

uN (x, t) = vN (x, t) + h(t)φ0(x) with vN (x, t) =
N∑
k=1

vk(t)φk(x)

where φk(x) are the Lagrange polynomials of degree N with respect to the CGL points.
Note that vN (x, t) satisfies the homogeneous boundary condition, i.e., vN (x0, t) = 0. Let
f̂N (v̂N (t)) =

(
F (h(t)), F (v1(t)), · · · , F (vN (t))

)T and v̂N (t) =
(
v1(t), · · · , vN (t)

)T . Let
DN ∈ RN×(N+1) be the submatrix of the first-order Chebyshev differential matrix D ∈
R(N+1)×(N+1) formed by removing the first row of D. Then the Chebyshev collocation solu-
tion v̂N (t) is obtained by the following system of differential equations

dv̂N (t)

dt
= −DN f̂N (v̂N (t)) with v̂N (0) =

(
u0(x1), · · · , u0(xN )

)T
. (3.2)

Let `, m and Ns be positive integers satisfying Ns = m` and let si = i∆s (i = 0, 1, · · · , Ns)
be an uniform time sequence with a sample time spacing ∆s = T/Ns. We first compute the
approximate solutions v̂N (si) (i = 0, 1, · · · , Ns) for Eq. (3.2) and then the sample solutions
v̂N (sj`) (j = 0, 1, 2, · · · ,m) are collected for the POD basis. Here sj` denotes the ordered
time sequence in j (j = 0, 1, 2, · · · ,m) selected from {si}Ns

i=0 with the given value of `. sj`
are selected from the set {si} either uniformly or not. If ` = 1, sj` = sj (j = 0, 1, 2, · · · ,m).
If ` > 1, the sampling time spacing ∆s with which the numerical solution is computed is
different from the sampling interval collected for the POD basis. For this case, the sampling
interval is `-times larger than the sampling time spacing.

LetX be the collection of the sample solutions such thatX ∈ RN×(m+1) becomes a sample
matrix whose jth column is v̂N (sj`), i.e.,

X = [v̂N (s0`) v̂N (s1`) · · · v̂N (sm`)].

Applying the SVD to X leads to get X = V ΣUT where V ∈ RN×N and U ∈ R(m+1)×(m+1)

are orthonormal matrices and Σ ∈ RN×(m+1) is the diagonal matrix whose elements are the
singular values of X , σ1 ≥ σ2 ≥ · · ·σr > σr+1 = · · · = σm+1 = 0 where r = rank(X) ≤
min{N,m+ 1}. We try to find the orthonormal bases that can represent the collected solution
well. Let Vp ∈ RN×p be the POD-basis matrix composed of the first p columns of V . The
value of p ≤ (m+ 1) is obtained by the truncation with a certain tolerance εp as below

σp > εp ≥ σp+1, εp > 0.

If the sample solutions are smooth in space, then the singular values decay rapidly and the
value of p becomes small with the given tolerance εp. Furthermore the sample solutions can
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be represented by a smaller number p of bases rather than the full number of bases. The
tolerance εp is usually taken small, e.g. ε ∼ 10−6 depending on the problem considered. If the
sample solutions are discontinuous, the singular values do not decay or decay slowly in general
depending on the behavior of the discontinuity except for some special cases. The special cases
include the case that the discontinuity is fixed and does not change with time for which only the
first few singular values are non-vanishing and the POD can be done efficiently. If the sample
solutions are discontinuous, the value of p may approach to r with the given value of εp in
general. Examples are illustrated in Section 5.1.

We reduce the number of solution basis by the transform of v̂N with Vp such that

Vpŵp(t) = v̂N (t). (3.3)

Then the reduced model is described by ŵp(t). From Eq. (3.2), we have the following equation
for ŵp(t)

dŵp(t)

dt
= −V T

p DN f̂N
(
VpŵN (t)

)
(3.4)

with the initial condition ŵp(0) = V T
p vN (0). If the flux functionF is linear, e.g. F (uN (x, t)) =

uN (x, t), then the right hand side (RHS) of Eq. (3.4) becomes simple as

RHS = −V T
p DNVp ŵp − h(t)V T

p d0

where −V T
p DNVp ∈ Rp×p and V T

p d0 ∈ Rp with the first column d0 of the Chebyshev dif-
ferential matrix D. In this case, the matrix DN is the submatrix formed by removing the first
row and column of D. Also the reduction order of this case is optimal. If the flux function is
nonlinear, the optimal reduction order is not obtainable and the complexity will increase in the
computation of the flux function directly. For this case, we directly compute the flux function
first before applying the operator V T

p DN ∈ Rp×N .
Let tn = n∆t (n = 0, 1, · · · ,M ) be an uniform time sequence with a time spacing ∆t =

T/M . To solve the reduced equation Eq. (3.4) in time, we use the TVD 3rd-order Runge-Kutta
method [18] that for n = 0, 1, 2, · · · ,M − 1, ŵn+1

p = ŵp((n+ 1)∆t) is updated as follows

w̄0 = ŵnp + ∆t
(
− V T

p DN f̂N (Vpŵ
n
p )
)
,

w̄1 =
3

4
ŵnp +

1

4

(
w̄0 + ∆t

(
− V T

p DN f̂N (Vpw̄0)
))
,

ŵn+1
p =

1

3
ŵnp +

2

3

(
w̄1 + ∆t

(
− V T

p DN f̂N (Vpw̄1)
))
.

(3.5)

From now on we write the vector valued function without theˆsymbol for the simplicity of
notation, e.g. vN (t) instead of v̂N (t) for the solution vector in Eq. (3.3).

If the solution to Eq. (3.2) is discontinuous, the spectral filtering method is applied to the
solution vN (t). The filtering is also applied in the reduced space to wN (t). For the given
solution vN (t) the filtered solution is given by the transformation

vN (t) = SqvN (t)
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where Sq is the filtering operator of order q. For the filtering, we use the exponential filter of
order q [19]. Fromwp(t), we first compute Vpwp for vN (t) and then apply the filtering operator,
SqVpwp. The obtained filtered solution is projected back to the reduced space by V T

p SqVpwp.
Thus the filtered solution in the reduced space is simply given by the following transformation

wp(t) = V T
p SqVpwp := Fpwp.

Since the filtering operator in the reduced space Fp = V T
p SqVp has the size of p× p, the

filtering can be done easily with a small number of p. For the detailed explanation of the
filtering method that we use in this paper is provided in Section 4.2.2.

4. POST-PROCESSING OF SAMPLE SOLUTIONS

The Chebyshev spectral approximation of Eq. (3.2) suffers from the Gibbs phenomenon for
discontinuous solutions. The sample solution is then affected by the Gibbs oscillations and
degrades the overall quality of the sample. These result in two drawbacks of the POD approx-
imation: 1) the value of p is large as the singular values decay slowly, hence the reduction
order is large and 2) the solution wp(t) in the reduced model is poorly conditioned making
the POD approximation inaccurate and causing a potential instability. These problems can be
cured by improving the quality of the sample solutions. In this section, we propose a post-
processing method of the sample solutions to construct well-conditioned POD bases. With
the post-processing, we do not need to modify the PDE solver for vN (t) or wp(t), but simply
generate the sample solutions with the same PDE solver, e.g. the Chebyshev spectral method
for our case, Eq. (3.2), and the same method for the reduced solution wp(t), Eq. (3.4). The
proposed method is composed of the following steps.

Step 1 [Reconstruction] The Gegenbauer reconstruction of oscillatory samples.
Step 2 [Regularization] The regularization of the reconstructed samples using various

methods such as the smoothing or filtering methods.
Step 3 [Re-projection] The projection of the regularized samples to the original solution

space, e.g. the Chebyshev polynomial space of degree N .
Step 4 [Re-initialization] The solution wp(tn) is set to be V T

p vN (sj`) with the sample
solution vN (sj`) if tn = sj`.

4.1. Step 1: Reconstruction via Gegenbauer projection. Suppose that we are given a nu-
merical approximation of f(x), which suffers from the Gibbs phenomenon. The Gegenbauer
reconstruction seeks the reconstruction fg(x) of f(x) in the Gegenbauer polynomial space
GmG

fg(x) ∈ GmG = span{Gλl (x), l = 0, 1, 2, · · · ,mG, x ∈ [−1, 1]},
where the Gegenbauer polynomials Gλl (x) are defined by the following orthogonal relation in
the Gegenabauer inner product (·, ·)λ below

(Gλl , G
λ
l′)λ :=

1

hλl

∫ 1

−1
(1− x2)λ−

1
2Gλl G

λ
l′dx = δll′ .
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Here δll′ is the Kronecker delta and hλl are the normalization factors given by

hλl =
π21−2λΓ(l + 2λ)

n!(n+ λ)Γ(λ)2
,

where Γ(·) is the Gamma function. The three-term recurrence relation is given by

Gλ0(x) = 1, Gλ1(x) = 2λx,

Gλl (x) =
2(l + λ− 1)

l
xGλl−1(x)− (l + 2λ− 2)

l
Gλl−2(x), l ≥ 2.

We will use the above recurrence relation to compute the Gegenbauer polynomials. If l is large,
the Gegenbauer projection, with finite precision becomes ill-posed by round-off errors. The
Gibbs complimentary condition, however, suggests that the dimension dim(GmG) of GmG , is
smaller than the dimension of the numerical solution space, i.e. mG � N [12], which helps
to compute the Gegenbauer expansion in a stable manner. More properties of the Gegenbauer
polynomials are found in [20].

Let f(x) be piecewise analytic on the interval [−1, 1]. Without loss of generality, suppose
that the function f(x) is analytic in a subinterval [a, b] ⊂ [−1, 1] and has jumps at x = a and
x = b. Let ξ be the linear map ξ : x ∈ [a, b]→ [−1, 1] such that

ξ =
2

b− a
(x− b) + 1.

Further we assume that we are given a set of the Fourier coefficients of f(x), {f̂k|f̂k =
1
2

∫ 1
−1 f(x) exp(−ikπx)dx, k = −N, · · · , N}. Then the Gegenbauer reconstruction fg(x) in

x ∈ [a, b] is given by the projection of the Fourier approximation of f(x) onto the Gegenbauer
space as below

fg(x) =

mG∑
l=0

glG
λ
l

(
ξ(x)

)
:=

mG∑
l=0

(
fN (x), Gλl (ξ(x))

)
λ
Gλl
(
ξ(x)

)
,

where fN (x) =
∑N

k=−N f̂k exp(ikπx) is the Fourier partial sum of f(x) based on {f̂k}. The
maximum error between f(x) and fg(x) then decays uniformly in the interval of (a, b), i.e.
||f(x)− fg(x)||∞ → 0 if 0 < α < 1 and 0 < β < 1 for λ = αN and mG = βN [12]. There
is no precise theory known on how to find the optimal values of α and β. However, the values
of λ and mG should be less than N . Otherwise fg(x) recovers fN (x) instead of f(x) as N
increases.

For the Chebyshev spectral solution, we replace the Fourier partial sum with the Chebyshev
partial sum, also denoted by fN (x), as

fN (x) =
N∑
k=0

f̂k Tk(x),
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where Tk(x) is the Chebyshev polynomial of degree k and the Chebyshev coefficients, f̂k, are
given by

f̂k =
2

πcn

∫ 1

−1

1√
1− x2

f(x)Tk(x) dx.

Here cn = 2 if n = 0 and cn = 1 otherwise. The Gegenbauer reconstruction fg(x) on
[a, b] based on fN (x) is given by the projection of the Chebyshev approximation onto the
Gegenbauer space

fg(x) =

mG∑
l=0

glG
λ
l

(
ξ(x)

)
=

mG∑
l=0

(
fN (x), Gλl (ξ(x))

)
λ
Gλl
(
ξ(x)

)
.

Let Q ∈ R(mG+1)×(N+1) be the transform matrix whose (l, k) elements are given by

Qlk =
(
Tk(x(ξ)), Gλl (ξ(x))

)
λ

=
1

hλl

∫ 1

−1
(1− ξ2)λ−

1
2 Tk(x(ξ))Gλl (ξ) dξ.

Since the subintervals are arbitrary, the above integral has no closed form and is computed
using the quadrature rule. Let ~fN = (f̂0, f̂1, · · · , f̂N )T and ~fg = (g0, g1, · · · , gmG)T . Then
the Gegenbauer reconstruction coefficients are found by the projection of the Chebyshev partial
sum to the Gegenbauer space by the following linear equation

~fg = Q · ~fN .
For the Chebyshev Gegenbauer reconstruction the analytic conditions for convergence are not
found in literature. We use similar conditions as the Fourier case, α� 1 and β � 1 for α and
β of λ = αN and mG = βN .

In this paper, we use the first derivative of the Chebyshev partial sum fN to find the edge.
The derivative of fN (x) becomes f ′N (x) =

∑N
k=0 f̂k T

′
k(x). Since f ′N (x) is a Chebyshev poly-

nomial of degree at most N , we can rewrite f ′N (x) as f ′N (x) =
∑N

k=0 f̃k Tk(x), where using
the properties of the Chebyshev polynomials f̃k are given [19]

f̃k =
2

cn

N∑
j=k+1
j+k=odd

j f̂j .

Thus the derivative of fN (x) in terms of f̂k is given by

f ′N (x) =

N∑
k=0

f̃kTk(x) =

N∑
k=0

 N∑
j=k+1
j+k=odd

jf̂j

Tk(x).

Let the concentration be SN [fN (x)] = f ′N (x). The edge location xc is determined such that
the local maximum of |f ′N (x)| exists at xc and the following condition is satisfied

|f ′N (xc)]|/max
x
|f ′N (x)| ≥ γ
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where γ is a positive constant, γ ≤ 1. In this paper we choose γ = 0.3.

4.2. Step 2: Regularization. The reconstructed solution with the Gegenbauer post-procesing
is a piecewise analytic function with several jump discontinuities. Thus the direct projection of
the reconstruction back to the Chebyshev space will suffer from the Gibbs phenomenon. For
this reason, the reconstruction should be regularized near the jump discontinuities prior to the
re-projection back to the original space. In this work, we use 1) Gaussian smoothing and 2)
spectral filtering. For the smoothing, we first replace the boundary values fg(b−i ) and fg(a+i+1)
of each subdomain with the average value of those boundary values of the two adjacent subdo-
mains [ai, bi] and [ai+1, bi+1] as

fg(bi) = fg(ai+1) =
(
fg(b

−
i ) + fg(a

+
i+1)

)
/2

where the superscript + and − denote the right and left limits.

4.2.1. Gaussian smoothing. The smoothed solution denoted by fSg (x) from the Gegenbauer
reconstructed solution fg(x) with the Gaussian smoothing is given by the convolution of the
reconstructed function with the Gaussian kernel

fSg (x) =

∫
G(y − x)fg(y)dy,

where G is the Gaussian kernel given by G(x) = 1√
2πs2

exp(−x2/2s2), for some s > 0.
Using κ neighboring points both in the right and left to each smoothing point xj , we take the
smoothed solution fSg (x) such that

fSg (xj) =
κ∑

i=−κ
ci f(xj+i) with ci =

G(xj+i)∑κ
l=−κG(xj+l)

,

where xj+i can be in the neighboring subdomain.

4.2.2. Spectral filtering. For the spectral filtering, we first project the Gaussian smoothed so-
lution fSg (x) of fg onto the Chebyshev polynomial space using the procedure described in the
following section. Let PNfSg (x) be the resulting projected polynomial and f̂k be the expansion
coefficients corresponding to the Chebyshev polynomials. Here note that f̂k are obtained by
the direct projection of the Gegenbauer reconstruction fSg (x). Since fSg (x) may be still sharp
near the jump discontinuities it is possible for the projection, PNfSg (x), is oscillatory near the
jump discontinuities. To further reduce the oscillations while keeping the sharpness as much
as possible, the filtered re-projection is obtained by the following

F ρN [PNf
S
g (x)] =

N∑
k=0

ρ(k/N ; q)f̂kTk(x), (4.1)

where the filter function ρ(k/N ; q) is adopted to be the exponential filter as below ρ(k/N ; p) =

exp
(
− η(k/N)q(d(x))

)
. Here q is the filtering order and η is a positive constant such that

exp(−η) = εM . And εM is machine zero. In general, the filtering order, q, is a function
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of d(x) with d(x) defined as the distance from the nearest edge. If q is a constant for every
x, the filtering, Eq. (4.1), is a global operation and if q depends on x it is a local operation
requiring the adaptation condition of q as a function of d(x). It was shown that this adaptive
approach improves the quality of highly complex flow solutions under the presence of multiple
shocks [21]. The adaptive filtering can also be used for the high order mollification keeping the
convergence near the edges enhanced [22]. For the adaptive filter, at a given collocation point
xj , let xe be the location of the nearest edge from xj . Then d(x) = |xj − xe|. The adaptive
filter chooses the filtering order q so that the filtering order gradually decreases toward the edge
in the following way: q → ∞ for d → ∞, and p → 0 for d → 0. We use the global filter for
the numerical examples in Section 5 and the adaptive filtering for variable filtering order q will
be considered in our future work.

4.3. Step 3: Re-projection. Once the reconstruction is regularized, the regularized solution is
re-projected onto the Chebyshev polynomial space so that it can be used as the sample solution
to create a POD basis set. Let fRg (x) be the regularized solution via the Gaussian smoothing
or spectral filtering or both The projection of fSg (x) is given by

PNf
R
g (x) =

N∑
k=0

f̂k Tk(x),

where

f̂k =
2

πcn

∫ 1

−1

1√
1− x2

fRg (x)Tk(x)dx.

Note that fRg (x) can be piecewise continuous, hence the above integral has to be computed by
a composite quadrature rule considering the discontinuous points.

4.4. Step 4: Re-initialization. The regularized Gegenbauer samples are used for the construc-
tion of a new set of POD bases. The new samples are smooth, yet close to the exact solution
and the singular values decay desirably. However, according to the given PDE the solution eas-
ily develops discontinuity with time even though the samples or the POD bases are smooth. To
take advantage of the already post-processed samples we use the re-initialization of the solution
in the reduced space as follows. For each time step tn = n∆t when solving the reduced model
for the POD approximation, wnp , using Eq. (3.5), first we check whether tn coincides with
one of the sampling time sj` = j`∆s. Here we assume that we collect the samples uniformly
without loss of generality. If tn = sj`, then we replace the reduced solution wnp = V T

p vN (sj`)
using the post-processed sample solution vN (sj`) as the initial condition for the time integra-
tion at tn towards wn+1

p . We can choose the time stepping ∆t for the reduced solution wp(t)
such that sj` are the integer multiples of ∆t or we can also choose the time stepping arbitrarily
and adjust the time stepping accordingly to make tn coincide with sj` when t approaching sj` .
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5. NUMERICAL EXAMPLES

5.1. POD basis for discontinuous solutions. To show the behavior of the singular values
discussed in Section 3 we consider the following one-dimensional advection equation

ut + ux = g(x), t > 0, x ∈ [−1, 1], (5.1)

with the initial condition u(x, 0) = u0(x) and the boundary condition u(−1, t) = h(t). Equa-
tion (5.1) is found in various applications such as traffic flow models [23]. We will show how
the singular values behave when some sample solutions are discontinuous and the discontinuity
is either fixed or moving with time using the following cases:

1) u0(x) = sin(πx), h(t) = sin(π(−1− t)) and g(x) = 0,
2) u0(x) = sin(πx) +H(x), h(t) = sin(π(−1− t)) and g(x) = δ(x),
3) u0(x) = sin(πx) +H(x), h(t) = sin(π(−1− t)) and g(x) = 0.

Here H(x) is the Heaviside function and δ(x) is the Dirac delta function. These cases have
the exact solutions u(x, t) = sin(π(x − t)), u(x, t) = sin(π(x − t)) + H(x) and u(x, t) =
sin(π(x−t))+H(x−t), respectively. The solution for Case 1) is smooth both in space and time.
The solution for Case 2) has a jump discontinuity at x = 0 for all time t. The solution for Case
3) has a jump discontinuity, but the discontinuity propagates with time. For the Chebyshev
spectral approximation, we choose the CGL collocation points xj with N = 384. We take
` = N/4 and ∆s = T/Ns with Ns = m` for (m + 1) samples to construct POD basis.
Figure 1 shows the singular values of the sample matrix X with various m and T . The blue
line with circle symbols represents the singular values for Case 1), the black line with cross
symbols for Case 2) and the red line with bullet symbols for Case 3). The top figures show
the case that the final time is T = 0.4 and the bottom figures show the case that the final time
is T = 0.8. The left figures are for m = 40 and the right figures for m = 80. As shown in
the figures, the singular values for Cases 1) and 2) decay fast; the singular values σk become
as small as machine zero if k ≥ 3 for Case 1) and k ≥ 4 for Case 2). Here we note that the
solution for Case 2) is discontinuous at x = 0 for every t, but the first 3 singular values are
significant and the rest is ignorable. The jump discontinuity for Case 3), however, propagates
with time in space and makes the singular values decay slowly. If the time stepping for samples
is large (figures in top left and bottom figures) the singular values decay slowly. For the case of
m = 80 and T = 0.4, the singular values drop to machine zero around k = 54. Note that the
singular values in these figures are based on the exact solutions. The numerical solutions with
the spectral collocation method will be oscillatory near the jump discontinuity as shown in the
following examples.

5.2. Advection equation. To apply our proposed method, we first consider the linear advec-
tion equation with the discontinuous initial condition

ut + ux = 0, t > 0, x ∈ [−1, 1],

u(x, 0) = u0(x) =

{
1, −0.25 ≤ x ≤ 0.2
0, otherwise .
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FIGURE 1. Singular values withN = 384. Case 1): blue line with circle (-O),
Case 2): black line with cross (-×) and Case 3: red line with bullet (-•). Left
columns: m = 40. Right columns: m = 80. Top: T = 0.4. Bottom: T = 0.8.

For this simple problem, the reduced equation is simply given by from Eq. (3.4)
dwp(t)

dt
= −V T

p DNVpwp(t).

The initial condition for wp(0) is given by wp(0) = V T
p u0.

The numerical solution uN (x, t) is sought in the Chebyshev space of degree N , CN =
span{Tk(x)|k = 0, 1, · · · , N}. The initial condition is discontinuous and not in CN . The
interpolation operator is applied to the initial condition so that the Chebyshev initial condition
uN (x, 0) is in the polynomial space. We also apply the spectral filtering to smooth uN (x, 0).
Since the equation is linear, the filtering is not applied to the subsequent approximations. Thus
all the numerical solutions are oscillatory near the jumps including uN (x, 0). This equation
is a archetypical problem for more general nonlinear problems considered in the following
sections. The exact solution, ue(x, t) is given by

ue(x, t) =

{
1, −0.25 ≤ x− t ≤ 0.2
0, otherwise .

We set ` = N/4 and let Ns = m` with the number m = 80. Then the sample time spacing is
∆s = T/Ns. The time integration is done with the 3rd-order TVD Runge-Kutta method [18].
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FIGURE 2. Left: the numerical solution (red) and the exact solution (blue).
Right: the pointwise errors for T = 0.4 with N = 512.

Since the given problem is linear, the given discontinuous initial condition simply translates
with time and we do not need to impose the re-initialization.

The left figure of Fig. 2 shows a sample numerical solution (red) and the exact solution
(blue) at the final time T = 0.4. The right figure shows the pointwise errors between the
approximation and exact solution with the polynomial of degree N = 512. Here the order of
filtering is q = 16. As shown in the right figure, the errors at the jumps, x = T − 0.25 and
x = T + 0.2, do not decay.
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FIGURE 3. Left: the concentration S[uN ] at T = 0.4 with N = 512. Right:
the exact solution (blue) and the post-processed solution (red).

Now we apply the Gegenbauer reconstruction method to the obtained (m+ 1) sample solu-
tions for post-processing. For the Gegenbauer reconstruction, we use the conditions for λ and
mG as λ = N/64 and mG = N/64. Figure 3 shows the normalized concentration SN [uN ],
the exact solution and the post-processed solution at T = 0.4 with N = 512. As shown in
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FIGURE 4. Pointwise errors of the post-processed solution at T = 0.4 with
N = 128, 256, 512 and λ = N/64, mG = N/64.

the left figure, the jump discontinuities are well detected with the concentration S[uN ]. The
right figure shows that the Gegenbauer reconstruction well matches the exact solution. Figure
4 shows the pointwise errors of the Gegenbauer post-processed solution of uN (x, t) in loga-
rithmic scale for N = 128, 256, 512. As shown in the figure, the Gegenbauer post-processed
solution converges uniformly in each interval up to the discontinuity as N increases. Because
of the error in the location of the detected discontinuity, the error does not decay near the jumps.
The Gegenbauer post-processed solution is more accurate than the numerical solution uN (x, t).
The Gegenbauer reconstruction is regularized using the Gaussian smoothing. Figure 5 shows

FIGURE 5. Left: Sample solutions. Right: Gegenbauer post-processed sam-
ple solutions for T = 0.4 with N = 384 and λ = N/64, mG = N/64.

81 sample solutions and their Gegenbauer post-processed solutions for m = 80. As shown in
the figure, the post-processed sample solutions are free of Gibbs oscillations. Once the post-
processing is completed we compute the POD bases, for which we use the truncation criteria
as σp+1 ≤ εp = 10−3. With those POD bases constructed, we solve the reduced model for the
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POD approximations. For the POD approximations, we use a finer time stepping ∆t = T/M
and M = CtNs with Ct = 80. The final solutions through the POD approximation at T = 0.4
are given in Fig. 6. The left figure shows the POD solution (red) without the post-processing
and the right figure the POD solution (red) with the post-processing. As shown in the figure,
the POD approximation with the post-processing diminishes the Gibbs oscillations.
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FIGURE 6. POD solutions. Left: Without the post-processing. Right: With
the post-processing. T = 0.4 with N = 384 and λ = N/64, mG = N/64.

TABLE 1. CPU time (sec) for the sample, Gegenbauer post-processing, full
and POD solutions. N = 384.

Ct Sample solutions Post-processing Full solution POD solution
Ct = 40 3.103510 8.165839 116.294333 7.717133

Table 1 shows the CPU time in second for the sample, Gegenbauer post-processsing, full and
POD solutions with N = 384. The full and POD solutions are obtained with the time stepping
∆t = ∆s/Ct. The table shows each CPU time for Ct = 40. That is, the time stepping ∆t is 40
times smaller than the time stepping used for computing the sample solutions. The CPU time
for the SVD is not included because it is insignificant compared to the CPU times for other
procedures. The CPU time for the SVD is about 0.005839 sec. The total CPU time toward the
completion of the POD solutions is about 18.992321 sec, which is much smaller than the CPU
time for the full solutions.

5.3. Burgers’ equation. In [24], we considered viscous Burgers’ equation with the Cheby-
shev collocation method based on the POD method and demonstrated that the POD approxi-
mation for the Burgers’ equation is efficient and accurate. In this paper we extend the work to
the inviscous Burgers’ equation with the initial condition that is smooth and makes the solution
become discontinuous with time t > 0 and x ∈ [−1, 1] as below

ut +
1

2

(
u2
)
x

= 0, u(x, 0) = u0(x) =
1

4
+ sin(π(x+ 1)),
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with the periodic boundary condition. The given initial condition is smooth and a shock forms
at a later time t = ts. Once the shock forms, the shock propagates according to the Rankine-
Hugoniot relation. The above equation is solved until the final time T = 1. For the sample
solutions, we use the filtering order q = 32. Here note that the filtering is not necessary if
t � ts and one can adaptively change the filtering order or apply the local filtering adaptively
near the shock area once the shock forms. For the numerical experiment, we fix the filtering
order as q = 32 for all t. We choose N = 384, ` = N/2 and m = 80. We set Ns = m` and
∆s = T/Ns. For the POD approximation in the reduced space, we use a finer time spacing
given by ∆t = T/M with M = CtNs with Ct = 40, i.e. ∆t = ∆s/Ct. In this case, the time
spacing for the POD approximation is ∆t = 1.6276 × 10−6. For the Gegenbauer projection,
we use the same conditions as before, i.e. λ = N/64 and mG = N/64. For the Gaussian
projection we use s = 0.05 and κ = 10. Since the given PDE is nonlinear and a discontinuity
develops with time, we apply the re-initialization during the POD approximation in the reduced
space. For the truncation condition, we use εp = 10−5.
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FIGURE 7. (Color online) Left: Various solutions at T = 1. Right: Os-
cillatory sample solution (-•), Gegenbauer projected solution (-•), Smoothed
Gegenbauer projected solution (-N), POD solution without the post-processing
and re-initialization (o), POD solution with the post-processing and re-
initialization (-�).

Figure 7 shows various solutions at the final time T = 1. The left figure shows the solutions
in the whole domain and the right figure shows the solutions near the discontinuity. In the
figure, the green solid line with the green dots (-•) represents the sample solution. The red
line with the red dots (-•) is the Gegenbauer projected solution, which is a direct projection
of the oscillatory sample solution (the green) to the Gegenbauer polynomial space collected
on the Chebyshev collocation points xi, i = 0, · · · , N . The black solid line with the black
triangle symbol (-N) represents the smoothed Gegenbauer projection (-•). The blue line with
the blue square symbol (-�) represents the POD solution. The brown solid line (−) in the
left figure and the brown open circle (o) in the right figure represent the POD solution from
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the sample solutions without the Gegenbauer post-processing and re-initialization. The figure
shows how oscillatory these solutions are. First of all, the figure shows that the sample solution
and the POD solution without the Gegenbauer post-processing and re-initialization are the most
oscillatory solutions. The left figure shows that the POD solution without the post-processing
and re-initialization is not only oscillatory near the discontinuity but also oscillatory near the
left domain boundary. This is because the POD bases from the sample solutions with εp = 10−5

do not well resolve the discontinuous solution over the whole domain. As the right figure shows
the POD solution (brown circle, o) without the Gegenbauer post-processing and reoscillatory-
initialization is oscillatory near the discontinuity. As the discontinuity develops the filtering
does not completely suppress the oscillations. Based on the oscillatory sample solutions the
Gegenbauer reconstructions are found and projected back to the Chebyshev space. As shown in
the figure, the projected solution is free of the Gibbs oscillations and represents the developed
shock clearly (-•). For the POD approximation we smoothed the projected solution (black
solid line with black triangle symbols). The smoothed projection is smooth near the shock
without the Gibbs oscillations. Finally the figure shows that the POD solution (-�) with the
post-processing and reinitialization is close to the Gegenbauer reconstructed solution while the
oscillations are much dimished. Overall the POD solution with the Gegenbauer post-processing
and re-initialization yields a solution that represents the discontinuous solution reasonably.

TABLE 2. CPU time (sec) for the sample, Gegenbauer post-processing, full
and POD solutions.

Ct Sample solutions Post-processing Full solution POD solution
Ct = 10 22.884629 6.739353 224.888082 21.159279
Ct = 20 22.884629 6.739353 444.481493 42.354732
Ct = 40 22.884629 6.739353 900.438388 83.621026

Table 2 shows the CPU time in second used for the sample solutions, the Gegenbauer post-
processing, full and POD solutions. For the sample solutions, we usedm = 80 and ` = N/2 so
that ∆s = T/Ns with Ns = m`. The full and POD based solutions are obtained with the time
stepping ∆t = ∆s/Ct. The table shows the CPU time for different Ct for the full and POD
solutions, Ct = 10, 20 and 40. For each case, the total amounts of time for the sample solutions
and the Gegenbauer post-processing are same. As shown in the table, it took less than 7 seconds
to complete the Gegenbauer post-processing, which includes the edge detection, Gegenbauer
reconstruction, projection to the Chebyshev points and Gaussian smoothing. Compared to the
actual calculation of the POD solutions, the total amount of time for the Gegenbauer post-
processing is insignificant. The table also shows that the total amount of time for the full
solutions is about 10 times larger than the total amount of time for the POD solutions. That is,
the POD approximation with the Gegenbauer post-processing is much faster and more efficient
than the full approximations while it is accurate and less oscillatory. Here note that in order to
obtain the POD solutions, we need the sample solutions and the Gegenbauer post-processing.
Thus the actual amount of time to complete the POD approximations is the sum of the total
amounts of time for the sample solutions, Gegenbauer post-processing and the POD solutions
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FIGURE 8. Solutions to Burgers’ equation at the final time T = 1: the POD
solutions without the re-initialization (black solid line), the POD solutions
with the re-initialization (blue solid line) and the exact solution (dashed line in
magenta). Ns = 20, 30, 40, 60 from top to bottom and left to right.

in the table. Even adding up all these, the actual time for the POD completion is still smaller
than the time for the full solutions. Here we note that the CPU times consumed for the SVD is
not included in the table because they are insignificant, e.g. they are 0.010067 sec forN = 384
and 0.013045 sec for N = 512.

5.3.1. Re-initialization. To justify the re-initialization we compare the POD solutions with
and without the re-initialization after the Gegenbauer post-processing. We consider the same
Burgers’ equation in the previous section. Figure 8 shows the exact solution (dashed line in
magenta), the POD solution with the re-initialization (blue solid line) and the POD solution
without the re-initialization (black solid line) at the final time T = 1 and with N = 384. The
numbers of the POD basis used for the figures are 20, 30, 40 and 60, from top to bottom and
left to right, out of total 81 samples. As shown in those figures, the POD solutions without
the re-initialization are highly oscillatory near the shock while the POD solutions with the
re-initialization are close to the exact solution with the oscillations much reduced. We also
observe that the POD solutions without the re-initialization become less oscillatory and close
to the exact solution as the number of the POD basis increases. However, the POD solutions
with the re-initialization are similar for every case in Fig. 8.
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FIGURE 9. Total variation norms versus time for the POD solutions with-
out the re-initialization (black solid line), the POD solutions with the re-
initialization (blue solid line) and the full solutions (red solid line).

Figure 9 shows the total variation (TV) norm of the solution with time. The TV norm of
the discrete solution, v(x, t), at t is defined by TV (t) =

∑
j |v(xj+1, t) − v(xj , t)|. Figure

9 shows the TV norms versus time of the POD solutions without the re-initialization (black
solid line), the POD solutions with the re-initialization (blue solid line) and the full solution
(red solid line). The number of the POD basis used in each figure is same as in Fig. 8. Those
figures show that the TV norms increase drastically after the shock forms for the POD solutions
without the re-initialization and the full solutions. However, the variations of the TV norms for
the POD solutions with the re-initialization are small and the solutions are smooth.

Figure 10 shows the pointwise errors of the POD solutions without the re-initialization
(black solid line), the POD solutions with the re-initialization (blue solid line) and the full
solution (red solid line). The number of the POD basis used for each figure is same as in
Figs. 8 and 9. Those figures show that the pointwise error profiles for the POD solutions with
the re-initialization are sharper near the shock than those for the POD solutions without the
re-initialization and full solutions. As we expect, the full solutions are more accurate in the
smooth region than the POD solutions with the re-initialization for the given N . Even though
the POD solutions with the re-initialization are less accurate than the full solutions, they are
obtained about 10 times faster than the full solutions (see Table 2), which is the main reason
we use the POD method.
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FIGURE 10. Pointwise errors, in logarithmic scale, of the POD solutions
without the re-initialization (black solid line), the POD solutions with the re-
initialization (blue solid line) and the full solutions (red solid line) at T = 1.

5.3.2. Errors. Table 3 shows the L1, L2 and L∞ errors of the full solutions and the POD
solutions at T = 0.2. At T = 0.2, the solution to the Burgers’ equation is smooth. Table 5
shows the errors for the POD solutions with Ns = 11 for N < 256 and Ns = 13 for N = 256.
As expected for smooth problems the errors of the full and POD solutions are similar for each
N . For this reason, the POD method is beneficial as it finds the solution faster with reasonable
accuracy.

Table 4 shows theL1, L2 andL∞ errors of the full solutions and the POD solutions at T = 1.
At T = 1, the exact solution is discontinuous and the full solutions are highly oscillatory near
the shock. As there exists a shock, the errors are large compared to those for the smooth
solutions in Table 3. The errors of the POD solutions with the re-initialization are larger than
the errors of the full solutions. The L1 and L2 errors decay slowly for both the POD with the
re-initialization and full solutions while the L∞ errors do not decay for both cases as expected
for discontinuous problems.

5.4. Lax problem. Consider the 1D Euler equations for gas dynamics for the state vector u,

u = (ρ, ρv,E)T ,
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TABLE 3. L1, L2 and L∞ errors of the full solution and POD solution to
Burgers’ equation at T = 0.2. Ns = 11(tol = 10−5) for N < 256,
Ns = 13(tol = 10−6) for N = 256.

Method N L1 error L1 order L2 error L2 order L∞ error L∞ order
32 1.5612 (-1) – 6.4609 (-3) – 1.5602 (-2) –

Full 64 1.6600 (-2) 3.2 4.9705 (-4) 3.7 1.9936 (-3) 3.0
Solution 128 2.0705 (-4) 6.3 3.9884 (-6) 7.0 2.0003 (-5) 6.6

256 6.2572 (-8) 11.7 7.8702 (-10) 12.3 5.1004 (-9) 11.9
32 1.6350 (-1) – 6.8766 (-3) – 1.9359 (-2) –

POD 64 2.0855 (-2) 3.0 5.5489 (-4) 3.6 2.4801 (-3) 3.0
Solution 128 1.1342 (-4) 7.5 2.3402 (-6) 7.9 1.5206 (-5) 7.3

256 1.0754 (-7) 10.0 7.0528 (-10) 11.7 4.0332 (-9) 11.9
(n) = 10n

TABLE 4. L1, L2 and L∞ errors of the full solution and POD solution to
Burgers’ equation at T = 1. Ns = 11(tol = 10−5) for N < 256,
Ns = 13(tol = 10−6) for N ≥ 256.

Method N L1 error L2 error L∞ error
Full Solution 128 3.2274 5.2303 (-2) 3.0347 (-1)

256 3.4235 5.5447 (-2) 6.9606 (-1)
384 3.0947 3.2406 (-2) 3.0659 (-1)
512 2.5210 2.0858 (-2) 1.8972 (-1)

POD Solution 128 2.8602 9.0243 (-2) 7.1116 (-1)
256 2.6220 6.2400 (-2) 7.6757 (-1)
384 2.3659 4.6478 (-2) 7.3753 (-1)
512 2.2641 3.9874 (-2) 7.8855 (-1)

(n) = 10n

and the flux function F (u), F (u) = (ρv, ρv2 + P, (E + P )v)T , where ρ, v, P and E are
density, velocity, pressure and total energy, respectively. The pressure P is determined by the
equation of state

P = (γ − 1)

(
E − 1

2
ρv2
)
,

where γ = 1.4 for the ideal gas. We consider the Lax problem specified with the following
initial conditions

(ρ, v, P ) =

{
(0.445, 0.698, 3.528), x ≤ 0
(0.5, 0.0, 0.571), x > 0

, (5.2)

with the Dirichlet boundary conditions at x = ±1. The solution is sought until the final time
T = 0.13. Sample solutions are obtained with N = 1024, m = 60 and ` = N , i.e. the sample
time stepping is ∆s = T/(m`). For the POD based solutions we take the finer time spacing
∆t = ∆s/Ct with Ct = 20. The exponential filter order is q = 12.
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FIGURE 11. Sample density solutions with various times for the Lax problem,
Eq. (5.2).

Figure 11 shows the sample density solutions at various times, t = 0, 0.0194979, 0.0411646,
0.0628312, 0.0736646, 0.0844979, 0.106165, 0.116998, 0.129998 from top to bottom and left
to right in the figure. As the figures show, the shocks develop with time and the spectral so-
lutions are oscillatory near the jump discontinuities. For the reconstruction, as in the previous
examples, we first detect the discontinuities and apply the Gegenbauer reconstruction. How-
ever, we note that the edge detection with the derivative explained in the previous section is not
as efficient as the Burgers’ equation to identify the rarefaction region because the magnitude of
the derivatives near the region is much smaller than the shock area where the solution profile
is sharp. This implies that we need more sophisticated edge detection method with which all
the edges are found successively from strong to weak edges. The concentration method with
the derivative explain in Section 4.1 detects the strong shock areas clearly (x ≥ −0.05) and we
use the Gegenbauer reconstruction method for those areas only. For the rest, we use the sample
solutions.

Figure 12 shows the reconstructed sample density solutions at various times as in Fig. 11.
For the Gegenbauer reconstruction, we use the conditions λ = N/128 and mG = N/128.
As shown in the figure, the Gegenbauer reconstructions with the regularization are free of the
Gibbs oscillations near the strong shocks and the overall reconstructed solutions are smooth.
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FIGURE 12. Reconstructed density solutions with various times for the Lax
problem, Eq. (5.2).

Figure 13 shows the POD density solutions based on the Gegenbauer reconstructed solutions.
We choose the order of the POD basis such that p = m/2 = 30. Here note that one can
choose p based on the truncation with the tolerance value. In general the optimal value of the
tolerance level depends on the problem and parameter values used in the post-processing. Here
we manually choose the value of p to simply show how the proposed method behaves for the
fully nonlinear problem. For the construction of the POD bases, we further smooth the post-
processed sample solutions with the spectral filtering of order q = 2 in a global manner. Figure
13 shows the POD solutions. The POD solutions are oscillatory but the degree of oscillations
is reduced with the filtering before the POD calculation.

Figure 14 shows the detailed density solutions with various methods – the oscillatory sample
solution (-•), the Gegenbauer reconstruction (-•), the regularized Gegenbauer reconstruction
with filtering (-N) and the POD solution with the post-processing and re-initialization (-�).
With the filtering of the processed samples, the POD solution at t = 0.13 becomes smoother
and less oscillatory as the figure shows.

TABLE 5. CPU time (sec) for the sample, full and POD solutions.

Ct Sample solutions Post-processing (ρ, ρv, E) Full solution POD solution
Ct = 20 1964.815520 340.077863 40829.156065 681.097892

Table 5 shows the CPU times for the sample, full and POD solutions. The CPU time for
the reconstruction includes each reconstruction time of ρ, ρv and E and the regularization. As
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FIGURE 13. POD density solutions with the Gegenbauer reconstruction and
the reinitialization for the Lax problem, Eq. (5.2).
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FIGURE 14. (Color online) Various solutions at t = 0.13. Sample solution (-
•), Gegenbauer reconstruction (-•), smoothed Gegenbauer reconstruction with
filtering (-N) and POD solution with the post-processing and re-initialization
(-�).

shown in the table, the calculation of the POD solutions is completed much more quickly than
the full solutions while the POD solutions are less oscillatory.
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6. CONCLUSION

The POD method efficiently provides a fast algorithm to calculate unknown solutions based
on the given sample solutions. The reduction of the computational complexity is mainly based
on the smoothness of the samples. However, if the solutions sought are discontinuous and the
discontinuity is parameterized e.g. with time, we do not expect the same degree of reduction.
To take advantage of the POD method for discontinuous problems, we proposed to recon-
struct and regularize the sample solutions based on the Gegenbauer reconstruction method and
re-initialize the reconstructions during the POD calculations. With the Gegenbauer reconstruc-
tion, we were able to find accurate reconstructions to the exact solutions. These solutions are
used sporadically during the POD calculations through re-initialization. Our numerical results
show that the proposed methods yield reasonable POD solutions with the CPU time and Gibbs
oscillations both reduced.

Here we remark that our paper more concerns the process in how to find accurate POD
approximations in the reduced space with a small number of POD bases for the given samples
rather than in how to find accurate sample solutions. Thus the proposed method will be useful
for the case that the samples are given to the users and the users are supposed to find POD
solutions based on the given samples.

We also remark that the quality of the POD solutions presented in this paper is affected
by the performance of the individual methods used in the reconstruction and regularization
steps. Thus one can achieve better POD performances if more advanced methods are used in
such steps. In this paper, however, we did not attempt to further develop these reconstruction
and regularization methods. Instead we attempted to show how the POD solutions can be im-
proved for the discontinuous solutions with the proposed method as a proof-of-concept, which
was demonstrated by the numerical experiments. We will consider using more sophisticated
methods in the reconstruction and regularization steps in our future research.

For the 2D problem, one possible way is to apply the Gegenbauer post-processing using the
slice-by-slide approach in the Cartesian grid such as those found in [25, 26]. Then the POD
approximation can be applied as a tensor product. We will extend the proposed method to the
2D problem in our future research.
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