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AN EFFICIENT IMPLEMENTATION OF BDM MIXED METHODS
FOR SECOND ORDER ELLIPTIC PROBLEMS

J.H. KIM

ABSTRACT. BDM mixed methods are obtained for a good approximation of veloc-
ity for flow equations. In this paper, we study an implementation issue of solving
the algebraic system arising from the BDM mixed finite elements. First we discuss
post-processing based on the use of Lagrange multipliers to enforce interelement con-
tinuity. Furthermore, we establish an equivalence between given mixed methods and
projection finite element methods developed by Chen. Finally, we present the imple-
mentation of the first order BDM on rectangular grids and show it is as simple as
solving the pressure equation.

1. INTRODUCTION

Consider the homogeneous Dirichlet problem :

(1.1) —div(a(z)grad p) = f(z), Vz € €,
' p=0, Vz € 09,
where © is a bounded domain in R? with smooth boundary 09 and f € L?*(Q) is a
given real-valued function and a(z) is a positive, smooth function on the closure of 2.
For solving this problem, we use a mixed finite element method. so that we have a
good approximation for the velocity. We note that other methods, such as cell-centered
finite difference method and finite volume method can be derived from mixed methods.
To introduce the mixed method for the above problem, we first define the spaces :
Vi=H(div; Q) = {ve (L*Q)?| divveL*Q) },
W = L3(Q).

Let u = —a(z)grad p in Q and ¢(z) = a(z)~!. Then the mixed formulation of (1.1) is
obtained by
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c(r)u+grad p=0, Vz €,
(1.2) divu=f, Vzeq,
p=0, vz € 0N.

The mixed weak formulation of (1.1) is given by [1] :
Find (u,p) € V x W such that

(13) { o V)=t p) = wev,

(divu, ¢) =(f, ¢9), VgeW,

where (-,-) denotes the inner product in L2(Q2) or (L?(Q))%.

We discretize this continuous formulation in the usual way : establish a triangu-
lation 7 and construct finite-dimensional subspaces Vj, C V and W, C W. But,
as different from the standard method, there are some compatibility conditions, i.e.,
v € V if and only if for all K € Ty, v|k € V(K) and for any pair of adjacent elements
K, Ky € Ty, we have v|k, - nk, + V|k, - nk, = 0 where ng; is the unit outer normal
vector to K;, 1 = 1,2. Then, the mixed finite element approximation is the solution
(un, pr) € Vo x Wp of

L4 (cup, v) — (div v, py) =0, Vv € Vp,
(-4 { (divun o) = (F, ) Vg€ Wa

This discretization by mixed finite element methods leads to linear system of the form
Auh - Bph = 0,

(1.5) { ™
up = f

It was shown in [2] that this system is generally indefinite. For this reason we cannot
use any well-known numerical method such as conjugate gradient method to solve the
system (1.5). However, we can algebraically reduce this system to a symmetric and
positive definite system as follows : Inverting A in the first equation of (1.5) gives

(16) ‘ u, = A_prh.
Substituting (1.6) into the second equation in (1.5) yields
(1.7) B'A™'Bpy = f.

We know that it is difficult to invert the matrix A, since A is not block diagonal. This
is due to the continuity constraints from the finite element space Vj,.

To overcome this drawback and to enforce the continuity of the normal component
of uy, across interelement boundaries, we will change the problem (1.4) to the hybrid
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version using Lagrange multipliers introduced in [3], [4].
Let e denotes the edge or face of element. We define the spaces :
Vi={vel20))?|vlpe Hdiv; T), YT €T },
W := L*(Q),
L:={XXeL*e)and A=00ndQ },

and construct finite dimensional subspaces V, C V, W, C W, L, C L.
Then we obtain the extended problem :
Find (up,pp, M) € V), X W), X Ly, such that

((cup, v) = Y (divv, pa)r+ Y (v nr, M Yor =0, Vv € Wy,
TeT, TeTh
(18) ! S (divu, gz = (f, 9), Ve € Wi,
TeT,
Z<uh'nT7m>3T:0, Ym € Ly,
\ TeTy

where (-,-)7 and (-, )7 indicate the inner product in L?(T) and L?(9T), respectively
and np is the unit outer normal vector.

Let us consider the linear system generated by hybridization (1.8). It can be written in
the matrix form

Auy, — Bpp + CAp =0,
(1.9) Buy, = f,
Cluy, = 0.

The advantage of the system (1.9) is that the matrix A is block diagonal, with positive

definite diagonal of size dim(V,(T)). So A may be inverted easily and inexpensively at
the element level. We can algebraically compute this system by eliminating
(1.10) u, = A"'Bp, — A7IO\,
to obtain
w1) B'A™'Bp, — BtA7ICN\, = f,

' CtA™'Bp, — C'A™I0N, = 0.
The well-known Arnold and Brezzi [5] reduction of the saddle-point problem in (1.8)
to a symmetric, positive-definite linear system is to solve for p in terms of A using

the first equation of (1.11) and to substitute this relation into the second equation of
(1.11) to obtain an equation for A\,. Hence we have

(1.12) {C*'A™IC — (C'A™'B)(B'A™'B)"Y(B'A™'C)} M = .

We may solve this system and recover u from (1.10) by simple element-by-element
post process.
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The technique described above applies to the Brezzi-Douglas-Marini space [6]. And
we show that the multipliers obtained from (1.12) can be used in the reconstruction of
a new approximation p}, which is more rapidly convergent to p than pp.

We also present a general theory of the equivalence between mixed and nonconform-
ing method. A nonconforming method for some finite element space M}, is a Galerkin
method with the addition of some special projection operator, and so we call it a pro-
jection finite element method. We consider two conditions on M}, that are sufficient to
imply that the equivalence of the projection method to a given meixed method. Then
we will construct the space M}, for BDM space. And we deal with one method of solving
the lowest order BDM mixed method.

This paper is organized as follows : In §2, we introduce BDM spaces devised by
Brezzi-Douglas-Marini[6] and the error analysis of BDM mixed method is made. In
§3, we consider the post-processing suggseted by Arnold and Brezzi[5]. We can obtain
better approximation from this process. §4 is devoted to the derivation of projection
finite element method. And also space M}, associated with projection method is con-
structed. Finally, we introduce a way to solve the first order BDM mixed method over
rectangular elements.

2. ERROR ANALYSIS FOR BDM SPACE

2.1. Brezzi-Douglas-Marini space. The Brezzi-Douglas-Marini (BDM) space V}, X
W, on triangles of order k is defined by [6], [7] :

Vi={ve@*@)| vire(P(T)? VYTeT},
Wi={qeL*Q)| qlr € B_1(T), YTE€T}
Ly={AeL?e)| Mc€Pile) ifecQ and A.=0 ifeCdf}.

We have by a simple count, dim (V,(T)) = (k+1)(k+2) and dim (Wx(T)) = 31k(k+1).
For the choice of degrees of freedom, we have

Lemma 2.1. For k > 1 and for any v € V},, the following relations imply v = 0.
(1) feiv -np; ds =0, Y ¢; € Pe;),
(2) [fpv-grady;_1 dz =0, V1€ P1(T),
B) Jrv-dide=0, Vgi€{¢€(P)|divei=0, ¢i-nle=0}
The BDM space on rectangles of order k is given by (6], [7]:
Vi ={veL*N)?]| v|g € (P(R)? & Span(curl 21y, curl Y, YReTh},
Wi={qeL*Q) | dlr€P1(R), YRET},
Ly={XeL%e)| McePe) ifec and \.=0 ifeC 0N},
where curl w = (—%7;—’, %‘wﬁ). By a simple computation, we get dim(Vy(R)) = k*+3k+4
and dim(W,(R)) = 3k(k + 1).
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For the three-dimensional case, the BDM space over rectangular parallelepiped of order
k is defined by [8] :
Vi ={ve@20))?| vlr € (P(R))’ @ Span | curl(0,0, zy T 2F ),
curl(0, 2 1y* 72, 0), curl(zF'y2*1,0,0), i=1,2,---k] },
Wi={qgeL*Q)| qlr € P-1(R), YVRET;},
Ly={XxeL%e)| M€ Pile) ifeCQ and M=0 ifeC N},

where curl F = ( ‘9—61;—1 — %1%, —%3 %, %%2 — %% ). The dimension of Vj is that

of (Py(R))® plus 3k +3 ie., (k+1)(k+2)(k+3)+3(k+1).
This space have been carefully defined in order to have
div v € Pr_1(R),
{ v - nle; € Pr(es)
The degrees of freedom is determined by the following result.

Lemma 2.2. For k > 1 and for any v € Vy, the relation
(1) feiV-mpi d8=0, VQO@EP]C(GZ),

(2) JpVv-di—2 dz =0, Y ¢ica € (Pi—2)?
imply v =0.

Remark 2.1. The above definitions for BDM space have been designed in order to keep
div v in Py_1(R) by adding divergence-free functions to (Py(R))" while providing terms
with a normal component in Py(e;) on each side or face e;. In the three-dimensional
case, there is no unique way to give such a definition. For example, we could have used,

Vi={ve*)?| vlre (Py(R))® @ Span [ curl(0, 0,z lyzF),
curl(0, zy* 211, 0), curl(z*¥'y*12,0,0), i=1,2,---k] }.
2.2. Error estimates. The analysis of our mixed methods will be simplified by the
existence of a projection II x P, : V x W — Vj, x W}, having the properties :
(1) Py is L%(Q)-projection.
(2) div II;, = Py, div: V — W)}, is surjective.
(3) the following approximation properties hold :

(2.1) lu —Tpullo < Clluflh",  (1<r<k+1),
(2.2) |div(u — Hpu)|o < C||div ul|-h", 0<r<k+1),
(2.3) lip = Prpllo < Clipll-h", (0 <7 <K).

(4) orthogonality :

(2.4) (div(u — ITpu), q) = 0, Y q € Wh,

(2.5) (div v, p— Ppp) =0, VveW.
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Let us turn to the analysis of the error in the procedure of (1.4). Subtracting (1.4)
from (1.3) and applying (2.5) leads to the error equation

(c(u—wp), v) = (div'v, Pyp—pr) =0,
(div(u —uy), ¢) =0.
To obtain error estimates, we need a duality lemma described by Douglas and
Robert[9]. First, we will define that © is (s+2)-regular if the Dirichlet problem

L'¢ =1, Ve,
¢ =0, vV z € 09,

is uniquely solvable for ¢ € L2(Q2) and if ||¢||s+2 < C|l%|ls, for all ¥ € H*(R).
The duality lemma is as follows.

(2.6)

Lemma 2.3. Let Q be 2-regular. Then for sufficiently small h,
1Php — pallo < C(Jlu — uplloh + [[div(u — up)[loh®~%*).

Proof. Let ¢ € H(Q) and ¢ € H2(Q) N H() be such that L*¢ = 1. Then, by
(2.4),

(Pap — pny ¥) = (Pup — pr, —divll,(agrade))

= (Pup — pr, div(agrad¢ — Ipagradg)) — (Pup — pa, div(egrade)).
By the first equation of (2.6), we have
(Pap — P, ¥) = (c(u — up), agrad$ — II,(agradg)) — (c(u — up), agradg).
Using Green’s formula, we can obtain
(Pap — phy ) = (c(u — u), agrad¢ — II,(agradg)) + (div(u — u), ¢ — Prd),

since ¢ € H} ().

By (2.1), (2.3) and using supy,c go (P’ll’;f’:ﬂ/’ = ||Pnp — prllo, we can obtain the desired
result.

Theorem 2.1. Assume that the Dirichlet problem (1.1) has a unique solution and that
Q is 2-reqular. Then for h sufficiently small there exists a unique solution (up,pn) €
Vi, x W}, of the mized method equation (1.4) . Moreover, the error w — uy, p —pp can
be estimated by the inequalities

(2.7) lp — prllo < Cliplleh¥,

(2.8) i lu = unllo < Cllpligs1h**.
Proof. Since p —pp =p — Pyp + Pyp — pp, we have

[P — prllo < llp = Pupllo + | Pap — pallo-
We apply the duality lemma to the error equation (2.6). Then
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Since u—up =u—1Ilu+Hyu — uy,
lu—wsllo < |lu—pullo + [Tpu — upllo.
Now we take the test function v = IIyu — uy, in (2.6) to see that
(c(llpu —uy), Opu — up) = (div(llpu — up), Prp — pr) — (c(u — Ixu), IIu — uy)
= —( c(u —zu),Ipu — up).
Then,
[Hpu — uplle < Cllu — Ixulle.
By (2.1) , we have
(2.10) Ju—willy < Cllulht,  (1<t<k+1).

Since (div(u — u),q) = 0 and (div(u — uy),q) = (div(Ilyu — uy),q), V ¢ € Wy, we
know that div(Ilu — u) = 0. Hence,

(2.11)  ||div(u—up)|jo < C||div(u —Izu)llo < Cl|div u||sh°, (0<s<k+1).
If (2.10) and (2.11) are substituted into (2.9) , then
1Php — pallo < C( [lullh™™ + |[div | &R+ ),
By (2.3), we obtain,
Ip = pallo < CClplleh" + [ullh™* + [[div wl] A ERF ) (0 <r <k).
Thus for small h and the choice r =t + 1 = s + min(2, k)

lp — pallo < Cllpllxh",
because of |jull;—; + ||div ul|;—2 < C||p||;. It then follows immediately that

o — unllo < Cllplles1ht+L.

2.3. Comparison with Raviart-Thomas space. The Raviart-Thomas (RT) space
Vi, x Wy, on triangles of order k is defined by [1] :

Vo ={ve(L()*| vir € (P(T))* © Span («F(T)), VYT €T},
Wi={qeL*Q)| qlr € P(T), YTET},
Ly={XeL*e)| Mc€Pile) feCcQ and A\, =0ifeCIQ }.

It can easily be checked that the dimensions of V;, and W}, are given by dim(V,(T)) =

(k + 1)(k + 3) and dim(W,(T)) = 3(k + 1)(k + 2), respectively.
To give a more precise definition for rectangular elements, we shall define

Pey(R) ={ p(z,v) | p(z,y) = Y _aga'y/, a R},
i<k
i<i
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the space of polynomials of degree < kin z and <! in y.
Let Qx(R) = Pt x(R). Then the RT space on rectangles of order k is given by [1],]9] :

Vi={ve@*M) | v|g € Poy15 X Pepr1, YVRETH },
Wh={qeL*Q)| qdlrc Qx(R), YReT,}
Ly={Xe€L?e) | Mc€ Pile) feCcQ and A =0ifecC o }.

We have by a simple count, dim(V,(R)) = 2(k + 1)(k +2) and dim(Wx(R)) = (k +1).
The error estimates are given by [9],[10] :

lp — pallo < C”p“k—}-l-i-&k‘ohk-i_l,
lu—upllo < Clipllrsrh*H.

Remark 2.2. BDM space lies between corresponding RT spaces, i.e., RTx_1 C BDMy C
RTy. For instance, in the case of k=1 we have

! t !
p— —.« Ehwt

' v

Remark 2.3. BDM space have smaller dimension than the RT space of the same index.
For the case of rectangular elements, the dimension of Vi, for BDM space is k? + 3k +4,
whereas the dimension of Vi, for RT space is 2k? + 6k + 4, which is essentially twice as
great. Also dim(Wj,(R)) of BDM scalar part is 5k(k + 1) versus (k + 1) for the RT
scalar part. So the solution of the linear algebraic system associated with BDM space 18
simpler than that associated with RT space. '

Remark 2.4. BDM space and RT space provide asymptotic error estimates for the
velocity but different error estimates for the pressure. After post-processing, which is
mentioned at the nezxt section, they also provide same error estimates for the pressure.

3. ANALYSIS OF THE HYBRID FORM AND POST-PROCESSING

3.1. Error estimates for the Lagrange multiplier. Defining the norms on Py(e)

Dalzn =D IliEe
eCQ

lAhlzé,h = Z 'e“p‘h“g,e'
eCf

We now compare )\, with Qpp , where Qp be the orthogonal projection defined
locally by L?(e)-projection onto P(e) for e C €.
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Theorem 3.1. If (up,pp, \n) € Vi X Wy x Ly, is the solution of (1.8) then
. 1 _1
(3.1) M = Quplloe < C( hEllu— upllor + hy® | Pap — pallor ),
(32) IAn = Qnpl_1 < C(Rllu—anllo + [[Pap = pallo ).
Proof. Clearly, (3.2) is an immediate consequence of (3.1). In order to prove (3.1),

let us consider e C QN T. It is easy to prove that there exists a unique v € V}, having
support in 7" such that

(3.3) V-ne = Ap — Qnp, on e,

(3.4) v-np =0, on 0T \ e,

(3.5) (v,grad ¢)7 =0, ¢ € P1(T),
(3.6) (v,curl ¥)r =0, 1 € Byy1(T).

Then a simple scaling argument shows that

(3.7) hrlivivg + [Vlior < Ch2lAn — Qupllos-

We may choose v as the test function in the first equation of (1.8) which gives using
(3.3),

(3.8) (cup, v)r — (div v, pr)T + ( An, A — Qnp )e = 0.
Since cu = —grad p, Green’s formula implies
(3.9) (cu, v)r — (div v, p)7 + (P, A= Qnp )e =0.

Subtracting (3.9) from (3.8), we have
A = Qupll§e = ( An — D, An — Qnp e

= (c(u — wg), v)r — (div v, Pyp — pn)-
Finally, (3.7) and (3.10) gives (3.1).

(3.10)

3.2. Post-processing of the BDM mixed methods. We have two pieces of infor-
mation about )\;, which is a polynomial of degree < k on each e, and p, which is a
polynomial of degree < k — 1 in each element. We shall use A, and pj to define better
approximation p;.

First, consider the triangular case.

Lemma 3.1. Let T € T;, be a triangle with edges ei,es,e3 . Then for all X, €
L2(e;) (1=1,2,3) and py € L?(T) there exists a unique p}, € Pry1(T) such that
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(1) k = nonnegative even integer
/ (p;; — )\h)¢ ds =0, Vo€ Pk(ei), 1=1,2,3,
e
[Gi-pwds=0.  verm),
(2) k=1
[ @) ds =0, i=1,2,3,
e
[Ghi-pwas=0,  vyenm,
T
3) k=3
/(p;kl_)‘h)d) dSZO, V¢EP2(ei)7 i=1,2,3a
e
/(pz —pn)y dz =0, Y ¢ € Py(T).
T
Moreover,
(3.11) IPkllo,r < C( thHoT +hi Z [ Anllo,e; )

Other ad hoc choices may be made for each partlcular odd k. However we did not
find an elegant general structure.

On the other hand, it is possible to give an analogue of above lemma for all k¥ > 1
in the rectangular case.

Lemma 3.2. Let R € T;, be a rectangle with edges ej,es,es,eq . Then for all
M € L%(e;) (1 = 1,2,3,4) and p € L?(R) , there ezists a unique p} € Pryi(R) @
Span (zFtly, zy**t1 ¢F+1) where

k+2 k42 ifk =
k+1 _J @ y—zy if k = odd
q (way) = { zkt2 _ yk+2 if k = even,

such that
/ (p;;—kh)d) d8=0, V(f)EPk(ei), ’i:1,2,3,4,
e

/R (B — ) ds =0, V¢ €Pis(R) + Span (lp_1()lx_1(3)),

where lp_1 is the Laguerre polynomial of degree k —1 .
Moreover,

(3.12) Ipillo.e < C( lIpallo,r + h Z [ Anlloe;
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We now prove that p} indeed approximates p with a higher order of accuracy than
bn .

Theorem 3.2. Let p be the solution of (1.1) and (up,pn,An) the solution of (1.8) .

Define p; by Lemma 3.1 in triangular case and by Lemma 3.2 in rectangular case.
Then,

lp —phllo < C||p||k+1—5k,1hk+2_5’“’l-

Proof. Let us consider the case of positive, even k on the triangular elements. We
first define pgl € P,1(T) by

/ W —p)pds=0, Ve Pyler),

[ k= de =0, Ve,

Then Lemma 3.1 implies existence and uniqueness of p% . By standard arguments, we
have

lp = Billo < Clpliks2h™*2,
Let qj, =p} — pgl. Since g, =p; — A+ A — Qurp+ Qpp — pi, we know that
[asds= [ On-uisds, voeRe. i=123

€; €;

?

Similarly, we can obtain,

/ g do = / (o — Pap)b dz, ¥ 9 € Py_a(T).
T T

Using formula (3.11) with py :=pp — Pyp and X, := A\, — Qnp , we obtain for each
T € T that

1
(3.13) I}, = phllor < C( llpn — Papllor + h | An — Quplloor )-
Combining (3.13) with (3.1) and then using (2.3), (2.8), we obtain
llp = pillo < Clipllksa k™2,

We can apply a similar argument to the other case.
The resulting superconvergent approximation of the pressure is asymptotically of the
‘same order as that for the similarly modified version of the Raviart-Thomas method.

4. PROJECTION FINITE ELEMENT METHOD

In this chapter, we show that for BDM mixed method, if the projection method’s
finite element space Mj, satisfies two conditions, then the two approximation methods
are equivalent. And also we construct M, for the triangular and rectangular elements.
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4.1. Equivalent projection finite element method. In order to introduce the pro-
jection finite element method, let M} be some as yet unspecified finite dimensional
space defined over T; . For ¢ € L?(Q), let Ry, : (L*(Q))® — Vj be the weighted
(L*(Q))"-projection defined by

(4.1) (c(¢ — Rng), v)=0, Vve,.

Then the projection finite element method is to seek my € M}, such that

(4.2) > (Ru(aVmy), Vn)g = (f, Pyn), Vn € M.
KeTy

Theorem 4.1. For a given mized method (1.8), if M}, satisfies

(C1) Forn € My, if (Vn, v)gk =0 for all v € Vi (K) and all K € Ty, then n = 0.
(C2) For n € My, its projection Qpn can be uniquely defined on each edge and for
any (ph, A\n) € Wy, X Ly, there exist ny,no € My, such that

{ Pyny = pp { Pyng =0
an
Qnrni =0 Qrna = A,

then the projection finite element method- (4.2) is well-defined and equivalent to it by
the following relations :

(4.3) u, = —Rp(aVmy),
(44 P = thha
(4.5) A = Qnmap.

Proof. To show that M}, give rise to a reasonable finite element method defined by
(4.2), we require that there exists a unique solution to the problem. It suffices to show
that if m;, € M} satisfies

Z ( Rp(aVmp),Vn )g =0, Vn€ M,
KeTp

then mp = 0. Taking n = my, and using (4.1), we obtain

( Rp(aVmy), Vmy, )k “'Rp(aVmyp),aVmy )k

(a
(¢ ' Ru(aVmy,), Rp(aVmy) )k
0.

Then the Rj-projection of aVmy, is zero. By (C1), we have mp = 0.
Now, we will show that two schemes (1.8) and (4.2) are equivalent. If m;, € M), satisfies
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(4.2) then by relations (4.3) — (4.5) and integration by parts, we have
(cup,v) — D (div v,pr)k + Y (V-1 M Jox

KeTy KeT;,
= —(cRu(@Vmp),v) — 3 (div v, Pamn)x + (Vv -1k, Qump Jox
KeTy, KeTy,
=— Y (Vv — Y (divv,ma)x + Y (Vg ma ok
KeTs KeTy KeTs

=0,

this is the first equation of (1.8).
Conversely, for any n € M,

3" (Ru(@Vmy), Vn)k = Y (—up, V)i

KeTs, KeTh
= Z (div up, )k — Z (up - ng,n)ok-
KeTy, KeTy,

By introducing two projection operators Py, and @, using (C2), and finally definition
of (1.8), we see that

3" (Ru(aVmy), Va)k = 3 (div up, Pan)k — ) (un -1, Qun)ox

KeTy, KeTh KeTy
= (f, Phn), V n € M.

Corollary 4.1. If a given mized finite element method (1.8) is equivalent to the projec-
tion finite element method (4.2) by the relations (4.3) — (4.5), then dim Wj+dim Ly <
dim My <dim Vj, + 1.

This result can be used to bound the dimension of M}.

4.2. Construction of M, for the BDM spaces. Now, we discuss the problem of
how to construct an appropriate nonconforming space Mj. Consider the localization
of the condition (C1) :

(C1’) For n € My(K), if (Vn,v)k = 0 for all v € V4(K) then n is constant on K.

Theorem 4.2. Suppose that Vj, x Wy, is a mized finite element space such that Wy, =
V- Vi, 1 € Wi(K) for each K € Ty, and 1 € Ly(e) for each edges. If My satisfies
(C1) for each K € Ty, and (C2) then M}, satisfies (C1).

We derive a local criterion that guarantees the equivalence in the case of mixed
spaces possessing the usual vector projection operator.

Theorem 4.3. Suppose that K is convex and that Vi (K) x Wi(K) is a mized finite
element space such that Wi(K) = V - Vi(K), 1 € Wi(K), 1 € Ly(e) and there exists
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an operator ® : (H*(K))" — Vi (K) satisfying

div ®,v = Pp(div v), (4.6)
{ (Ppv) -n = Qn(v-n). (4.7)
If M} (K) is a space of functions such that
dim (My(K)) = dim (Wp(K)) + dim (L, (0K)),

with unisolvent degrees of freedom described by

(DF1) (n,p)k for all p in a basis of Wp(K),

(DF2) (n,\)esx for all X in a basis of Ly(0K)

and if My (K) contains the constant functions then My(K) satisfies (C1') and (C2) .

We are now in a position to construct space M} that gives rise to projection finite
element methods that are equivalent to BDM mixed methods defined over triangular
or rectangular elements. These mixed spaces satisfy the condition of Theorem 4.2.2, it
remains only to define space M}, of the correct dimension and prove the unisolvence of
(DF).

First, consider the BDM spaces on triangles.

Let us define
My (T) = { {v € PyaT) | v|e € Peyi(e) 1, if k is even ,
{0 € Peya(T) | vl € Ple) ® ( Peyale)\ Pea(e) )}, if b is odd.

We first show that Mp(T) has the correct dimension. dim(Py42(T)) = 2(k+4)(k+3) is
exactly three more than dim(Wy,(T)) + 3dim(L,(0T)) = (k+1)(k+6). For simplicity,
assume that k is even. Let I;, 7 = 1,2, 3 be the barycentric coordinates defined on T' to
be the unique affine functions that take the value one at vertex i, and the value zero
on the opposite edge. For any £ € Py2(T), we can write that

(o) = Y ali@B(@), eeR
0<i+j<k+2
If £ € Mp(T), &le, € Prti(e;) implies that aggio = agyo0 = 0 for © = 1,2. Since
12 =1 —-ll on €3,
Eles= >, ayli(1—0) € Pijales)
0<itj<k+2 :
implies ;. ¢ +o(—1)7a;; = 0. So M}, has the correct dimension.
Now we consider the unisolvence of (DF). Suppose that & € My(T) has degrees of
freedom (DF') equal to zero. The (DF2) imply that on each edge e, £ is a polynomial
of degree k + 1 if k is even and k + 2 if k is odd. Since £ is a polynomial of odd degree
and the odd degree polynomials are odd functions, traversing 97T, we see that { must
vanish identically on the the boundary. As a consequence, we can write that £ = l1l3l3p
for some p € Py_1(T). Now (DF1) shows that (l1l2l3p, p)r = 0, which gives that
£E=0.
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For the BDM spaces over rectangular elements, the space M}, can be defined by
Mi(R) = P,_1(R) © A*(R) @ B*(R), where

={ Z[ a;,1Pk+1(2) + ai2Pet2(2) lpi(y), aij €R Y,

k

B*(R) = { Z pi(@)[ bi1pe+1(y) + bigpkr2(y) 1, bij €R
=0

Note that dim(A*(R)) = dim(B*(R)) = 2(k+1), so it is trivial to verify that dim(My(R)) =
dim(W4(R)) + 4dim(Ly(OR)). Since the proof of unisolvence is similar to that given
above, we omit it.

5. ONE WAY TO SOLVE THE FIRST ORDER BDM MIXED METHOD

Consider the lowest order BDM space over rectangular elements.
From section 2.1, we have

Vi(R) = { v | v =Pi(z,y) + r curl(z?y) + s curl(zy?) }

and dim(V,(R)) = 8.
A function v € V3 (R) is of the form

v =01 +bhx+eay+ rz? + 2szy,
vy = ag + box + 2y — 2ray — sy’

and the degrees of freedom of v may be chosen by Lemma 2.2. Following Brezzi and
Fortin [7], we begin by constructing basis functions of the Vj, on reference element
R = [0,1] x [0,1]. We will take test functions {1,z — 1} or {1,5 — 3} € P1(dR). For

example,
/ ¢1-n1 ds =1,
€1

1 ; 1
/4)1'”1(3/_—)0"5:/ ¢1'”3d8=/ ¢1-n3(y — 5) ds =0,
€1 2 €3 €3 2
/qﬁl-nids:/¢1-ni(x'—%)ds=0, 1=2,4.

Then we see that,

1 1
1
-/0(a1+01y) dy =1, ~/(a1+cly)( —i)dy =0,
0

1 1 1
—/ (ag + baz) dz =0, —/ (az + bax)(z — 5) dz =0,
0 0
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1
/ (ar +b1+7)+ (cp +2s)y dy =0,
0
! 1
[ a4 b1+ + (e + 250y - 3) dy =0
0
1
/ (ag + cg — 8) + (by — 2r)x dz = 0,
0

1
/ [(a2 + c2 — 8) + (by — 2r)z](z — %) dx = 0.
0

Thusa; = -1, by =1, ap=by=cy =cp =r=s=0and so ¢ = (_10“).
By similar calculation, we can obtain ¢;, ¢ = 2,---8. Therefor, the basis functions of
BDM; are given by

n -14+z pr 61—x(1—2y)
a=("07) a=(Maa")
n 0 45 = 6z(1 — z)
¢2—(—1+y)’ 2_(61—2x ))’
n_ [T 4 = 6z(1 — 2y
a-o) a-(auy)
n_ (0 6z(1 — z)
a-) A= (S0
Remark 5.1. ¢, i =1,--- ,4, do not contain curl part of continuous quadratic func-
tions and be the same basis as RTy. And we also know that div ¢§ =0, ¢ =1,--- ,4.

Let up = u} +uf, where uf is the part of non curl and u§ is the curl part. Then we
have discretization formula by mixed finite element methods

{ (cup, v) + (cuj, v) — (div v, pp) =0, Vv € Vi,
(div ug, ¢) + (divug, ¢) =(f, q9), Vg€ W
First, take v = ¢¢ and then ¢7, ¢ = 1,---,4. Since div ¢f = 0, we have (cu}, ¢f) +
(cu$, ¢) = 0 and (div u},q) = (f, ¢). This formula leads to linear system of the form
Ajuy + Asuj, =0,
{ B'u = f.

(5.1)

(5.2)

For the case of v = ¢, we obtain (cuf, ¢") + (cuf, ¢7) — (div ¢}, pp) = 0 and so
(53) Aguz + Aiuz — Bpp, = 0.
Since u§ = —A; ' Aju?, we put it to (5.3) to obtain

(A3 — A1A; 1 Ar)u} — Bpy = 0.
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Hence,

(5.4) u? = (A3 — AL A, 1 A1) Bpy,.

Substituting (5.4) into the second equation in (5.2) yields
BY(Az — ALASY A1) Bpy, = .

It can be shown that this system is also symmetric and positive-definite. In particular,
when 7j, is the partition of  into squares and node-numbering is appropriately given,
matrices Ay and Az are block diagonal, so that (A3 — AL A5 A4) is invertible in a very
simple way. But we found that the coefficient matrix for py, is rather complicated for
the general cases.
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