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Abstract

Signal pre-processing and post-processing are some areas of study around electrical resistance tomography due 

to the low spatial resolution of pixel-based reconstructed images. In addition, methods that improve integrity and 

noise reduction are candidates for application in ERT. Lately, formulations of image processing methods provide

new implementations and studies to improve the response against noise. For example, compact variational mode

decomposition has recently shown good performance in image decomposition and segmentation. The results from 

this first approach of C-VMD to ERT show an improvement due to image segmentation, providing filtering of noise 

in the background and location of the target.
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Ⅰ. Introduction

Electrical resistivity tomography(ERT) is a 

technique with wide applications in fields that vary 

from topography to medical diagnostics[1].

However in many measurements there is process 

noise on signals obtained from sensors[2]. This 

noise leads to artefacts in the background of 

output images, due to the ill-possedness of the 

reconstruction process. This condition can be 

reduced by regularization techniques or data 

processing methods[1].

On the side of data processing methods, algorithms 

as T-norm based linear back projection has been 

applied for cases of fluids phases. In this type of 

studies the final image precision is improved by 

the use of assumptions regarding the materials 

present in the flow[3]. However, these kind of 

assumptions are not possible for all the wide 

applications for ERT.

In the present study, an image decomposition 

and segmentation technique called two-dimensional 

compact variational mode decomposition(C-VMD) 

is introduced in the image post-processing of 

general ERT results.

By this post-processing, the ERT image result is 

decomposed into different modes, taking out the 

artefacts in background due to process noise and 
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leaving the defects to be detected. This final 

objective is achieved by extracting the different 

modes with a limited bandwidth regarding a 

characteristic center frequency.

Ⅱ. Electrical Resistivity Tomography

Electrical resistivity tomography is an imaging 

technique in which electrodes are located at the 

boundary of an object and measurements of 

potential are done while applying alternating 

currents in a defined pattern. The measured 

potential is related to a conductivity distribution 

 by[1]

∇∙∇   ∈ (1)

This partial differential equation is obtained by 

from relating Maxwell’s equations in an inhomo- 

geneous medium.

Different models have been developed for the 

solution of equation (1), such as the complete 

electrode model. This model stands out for the fact 

that it takes into account the interface between 

electrodes and the object in the study. It has been 

calculated and demonstrated that a surface 

impedance  is present at the mentioned interface. 

With this fact and a series of assumptions, the 

following boundary conditions are obtained [2, 4]







  on    (2)




  on ∈╲

  



 (3)

 


  on    (4)

Having  the area under the l’th electrode,  as 

outward unit normal,  as the injected currents,  

as the number of electrodes and  as the measured 

voltages at the boundary. Also, to ensure the 

existence and uniqueness of the solution, two 

restrictions are added






   (5)






   (6)

Because of difficulties in solving these equations 

in complex scenarios, a numerical procedure 

based on the finite element method(FEM) is used.

This method proceeds in first place with a mesh 

generation over the object(Ω) to solve what is 

called the “forward problem”. In this, potential 

distribution(u) and voltages on electrodes(U) are 

approximated with[1]

 ≈  
  



 (7)

≈   
  



 (8)

In which N is the number of nodes in FEM mesh, 

 is a two-dimensional first-order basis function 

and n is the patterns for measurement as = 

(1,-1,0,...,0), =(1,0,-1,...,0) ∈ ℝ. Unknowns to 

be determined are  and , respectively, the nodal 

and boundary voltages. Using (7) and (8), the 

forward solution can be represented in a matrix 

equation

   (9)

In which  is a sparse block matrix,  is the 

solution vector and  is a data vector. More details 

can be found at [1] regarding introduced matrices 

and FEM formulation.

Ⅲ. 2-D VARIATIONAL MODE 

DECOMPOSITION

In this section, before explaining the 2-D VMD, 

it is convenient to introduce the concepts of 

analytic signal and the case of 1-D VMD.

1. Analytic Signal

By definition an analytic signal is composed of 

only positive frequency components. In the case 

of a 1-D space, an analytic signal is obtained by 
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the sum of a signal () and its Hilbert Transform, 

defined as[5]

  


  




∞

∞




 (9)

Having  as the time variable, P as the Cauchy 

principal value to ensure integral is not undefined 

and  as a variable used for convolution. This 

formulation is equivalent to the convolution between 

 and 


.

With this Hilbert transform result, the analytic 

signal is obtained in the time domain[6].

    (10)

For the spectral domain, an analytic signal is 

obtained by taking out the negative frequencies[6]











  i f   
  i f   
 i f   

(11)

In the case of 2D signals, the same principle of 

frequency suppression on the spectral domain is 

used. To imitate the suppression of negative 

frequencies, a half-plane of the frequency domain 

is fixed to be zero, corresponding to a vector [6] 

.













  i f〈〉 

  i f〈〉 

 i f〈〉 
(12)

2. Variational Mode Decomposition

The basic 1-D variational mode decomposition 

is based on theoretical concepts such as the Hilbert 

transform, analytic signals, heterodyne demodulation 

and Wiener filtering. These are combined to break 

down an input signal into different modes(), each 

with a limited bandwidth around a central frequency

().

To define the bandwidth of the modes, the 

following process is used for each one[7]: 

1. Calculate the analytic signal(with unilateral 

spectrum) using the Hilbert transform.

2. Modulate the signal to a baseband using the 

mode’s central frequency.

3. Compute the mode’s bandwidth through the 

Dirichlet energy of the demodulated signal.

By this, a constrained variational problem is 

obtained as[7]

 
minℝ→ℝ

∥




 

 





∥






s.t. ∀∈ℝ  



   (13)

With  as the vector normal to the half plane 

that divides frequencies to be fixed to zero,  as 

a weighting parameter for each mode,  as Dirac 

delta function,  as an imaginary unit and  as 

the ’th mode.

It has been demonstrated that the use of this 

model exceeds other decomposition techniques 

with respect to modes separations and signal noise 

robustness[7, 8].

3. 2-D Variational Mode Decomposition

For the case of 2-D signals such as images, the 

previously exposed VMD can be generalized for 

n-dimensional spaces[8]

  
min

ℝ→ℝ∈ℝ


∥∇
〈〉∥






s.t. ∀∈ℝ  



   (14)

With  as an analytic signal resulting from 

(12). Also, in the case of higher dimensions, the 

coefficient  allows the weighting for different k 

modes.

The reconstruction constraint is subject to a 

quadratic penalty, Lagrangian multiplier and a 

process around alternate direction minimization 

(ADMM). For more detail on these minimization 

schemes, refer to [7, 9]. 

4. Compact Variational Mode Decomposition

The intrinsic mode functions obtained in the 
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decompositions are assumed to have a slow 

variation in their spatial amplitude, far slower than 

the carrier wavelength[10].

Taking Carson’s rule, the following is defined as 

an extension to apply for IMF’s bandwidth[5].

  ∆  (15)

With ∆ as frequency swing and  as modulation 

bandwidth of the FM component. Regarding , 

it is the AM component bandwidth.

This limitation of bandwidth can result on an 

incorrect separation of modes. To overcome this 

issue, a method of assigning binary support functions 

has been proposed in [7].

Ⅳ. Result and discussion

The present section presents results of ERT 

reconstructed images post-processing with C-VMD. 

Also, details regarding the various parameters and 

resulting metrics.

1. Image Reconstruction

EIDORS [11] libraries are used for image 

reconstruction in the Matlab software. As mentioned 

in section II, the package simulates a current pattern 

and measurements and proceeds with forward and 

inverse calculations.

For example, in Fig. 1-4, (a) and (b) represent 

the defined location of the defects and the image 

reconstruction respectively. The inverse problem is 

solved using modified Newton-Raphson (mNR) 

with   × .

2. Post-processing

Taking the reconstructed image as input, the 

C-VMD script presented in [6] is implemented for 

image segmentation. The main standard parameters 

used in all cases are shown in table 1.

Also on table 2, a summary of the different noise 

cases and results regarding iterations and  

convergence. As mentioned under section III, the 

 parameter consist of a [x, y] vector that defines 

the plane for frequency filtering.

As commented in [12], one of the main pivots 

in VMD is the initialization and update of . This 

parameter highly dependents on the sub- signals 

coefficient for narrowbandedness(). A high  

value provides a finer separation of sub- signals, 

since the Wiener filter is concentrated around the 

correspondent central frequency. This drawback is 

that the central frequency may not contain critical 

information by not being a principal frequency.

On the other hand, a low value of  results in 

a broader filter, giving a better convergence for 

principal frequencies but with an inferior separation 

[12].

Table 1. Initial parameters for C-VMD.

Parameter Definition Value

Initial Alpha
subsignals coefficient for 

narrowbandedness
200

Beta
spatial mode support 

penalty coefficient
0.5

Gamma spatial support TV-term 500

Delta
threshold for artifact 

classification
0.75

Rho data fidelity coefficient 10

Rho_k
u-v signals splitting 

coefficient
10

Tau
time-step of dual ascent for 

data
2.5

Tau_k
time-step of dual ascent for 

u-v splitting
2.5

t
spatial support TV-term: 
time-step of ODE/PDE

2.5

K
number of modes to be 

recovered
3

DC
true for keeping first mode 

at DC
0

init omegas initialization
0 (omegas 

initialized radially 
uniformly)

u_tol tolerance for u convergence 1×10 

omega_tol
tolerance for omega 

convergence 1×10 

A_tol tolerance for A convergence 0.0003

N max number of iterations 250

A_phase
iterations for propagation 

phases
[100, inf]
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(a)

 

(b)

(c)

Fig. 1 Image reconstruction for numerical case 1 with 

no noise added to measurement signal. 

(a) true distribution, (b) mNR output (c) C-VMD 

processing result.

Table 2. Cases with different SNR and corresponding 

C-VMD results.

SNR Iterations Final  values

Case 1 no noise 113

=[0.0747,0.0424]

=[0.0275,0.1922]

=[-0.216,0.0668]

Case 2 100 115

=[0.0738,0.0365]

=[-0.0004,0.0746]

=[-0.1444,0.0717]

Case 3 no noise 109

=[0.1404,0.0402]

=[-0.0507,0.2216]

=[-0.0674,0.0376]

Case 4 50 113

=[-0.1367,0.0826]

=[0.1985,0.0619]

=[-0.1051,0.0631]

Considering this, the C-VMD is modified to 

double the value for every ten iterations. This 

results in faster algorithm convergence since, 

without this modification, the used stopped 

criteria for an algorithm is the maximum number 

of iterations. It also shows a good performance on 

taking out background inhomogeneities, as seen in 

Fig. 1-4 (b) and (c).

Table 3. SSIM for presented cases.

mNR C-VMD

Case 1 0.6981 0.96

Case 2 0.6976 0.9592

Case 3 0.7286 0.9571

Case 4 0.6877 0.9535

Regarding metrics for the different used cases, 

table 3 summarizes the metric of structural similarity 

index (SSIM), which measures luminance, contrast, 

and structure of images between themselves[13].

Table 3 shows that according to the structural 

similarity index, the post-processed image has 

more similarity, which is the expected behavior 

since there is a denoised background space.
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(a)

(b)

(c)

Fig. 2. Image reconstruction for numerical case 2 with 

SNR=50 added to measurement signal. (a) true 

distribution, (b) mNR output, (c) C-VMD 

processing result.

(a)

(b)

(c)

Fig. 3. Image reconstruction for numerical case 3 with 

no noise added to measurement signal. (a) true 

distribution, (b) mNR output, (c) C-VMD 

processing result.
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(a)

(b)

(c)

Fig. 4. Image reconstruction for numerical case 4 with 

SNR=50 added to measurement signal (a) true 

distribution, (b) mNR output, (c) C-VMD 

processing result.

Ⅴ. Conclusions

This study presents the first compact variational 

mode decomposition approach to ERT processing. 

Since the number of variables to be tuned is 

significant, most of them are fixed to common 

values. Mostly the variables regarding frequency 

spectrum are studied since they provide considerable 

weight in the filtering behavior of the algorithm.

In further studies, these segmentation results can 

be combined with other areas, such as machine 

learning, to provide more variability to input data. 

Also, since the algorithm works on post-processing, 

it can be grouped with other processing methods 

or as a complement to other methods’ outputs.
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