• 제목/요약/키워드: positive semidefinite

검색결과 18건 처리시간 0.021초

THE PERIODIC JACOBI MATRIX PROCRUSTES PROBLEM

  • Li, Jiao-Fen;Hu, Xi-Yan
    • Journal of applied mathematics & informatics
    • /
    • 제28권3_4호
    • /
    • pp.569-582
    • /
    • 2010
  • The following "Periodic Jacobi Procrustes" problem is studied: find the Periodic Jacobi matrix X which minimizes the Frobenius (or Euclidean) norm of AX - B, with A and B as given rectangular matrices. The class of Procrustes problems has many application in the biological, physical and social sciences just as in the investigation of elastic structures. The different problems are obtained varying the structure of the matrices belonging to the feasible set. Higham has solved the orthogonal, the symmetric and the positive definite cases. Andersson and Elfving have studied the symmetric positive semidefinite case and the (symmetric) elementwise nonnegative case. In this contribution, we extend and develop these research, however, in a relatively simple way. Numerical difficulties are discussed and illustrated by examples.

CONTINUOUS PROGRAMMING CONTAINING SUPPORT FUNCTIONS

  • Husain, I.;Jabeen, Z.
    • Journal of applied mathematics & informatics
    • /
    • 제26권1_2호
    • /
    • pp.75-106
    • /
    • 2008
  • In this paper, we derive necessary optimality conditions for a continuous programming problem in which both objective and constraint functions contain support functions and is, therefore, nondifferentiable. It is shown that under generalized invexity of functionals, Karush-Kuhn-Tucker type optimality conditions for the continuous programming problem are also sufficient. Using these optimality conditions, we construct dual problems of both Wolfe and Mond-Weir types and validate appropriate duality theorems under invexity and generalized invexity. A mixed type dual is also proposed and duality results are validated under generalized invexity. A special case which often occurs in mathematical programming is that in which the support function is the square root of a positive semidefinite quadratic form. Further, it is also pointed out that our results can be considered as dynamic generalizations of those of (static) nonlinear programming with support functions recently incorporated in the literature.

  • PDF

Structural and Mechanical Systems Subjected to Constraints

  • Lee, Eun-Taik;Chung, Heon-Soo;Park, Sang-Yeol
    • Journal of Mechanical Science and Technology
    • /
    • 제18권11호
    • /
    • pp.1891-1899
    • /
    • 2004
  • The characteristics of dynamic systems subjected to multiple linear constraints are determined by considering the constrained effects. Although there have been many researches to investigate the dynamic characteristics of constrained systems, most of them depend on numerical analysis like Lagrange multipliers method. In 1992, Udwadia and Kalaba presented an explicit form to describe the motion for constrained discrete systems. Starting from the method, this study determines the dynamic characteristics of the systems to have positive semidefinite mass matrix and the continuous systems. And this study presents a closed form to calculate frequency response matrix for constrained systems subjected to harmonic forces. The proposed methods that do not depend on any numerical schemes take more generalized forms than other research results.

사물 인터넷의 최적화를 위한 행렬 완성 알고리듬 (Matrix Completion Algorithm for Internet of Things Localization)

  • 응웬루옹트렁;심병효
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2015년도 추계학술대회
    • /
    • pp.4-7
    • /
    • 2015
  • In this paper, we propose a matrix completion algorithm for Internet of Things (IoT) localization. The proposed algorithm recovers the Gram matrix of sensors by performing optimization over the Riemannian manifold of fixed-rank positive semidefinite matrices. We compute and show the closed forms of all the differentially geometric components required for applying nonlinear conjugate gradients combined with Armijo line search method. The numerical experiments show that the performance of the proposed algorithm in solving IoT localization is outstanding compared with the state-of-the-art matrix completion algorithms both in noise and noiseless scenarios.

  • PDF

ONNEGATIVE MINIMUM BIASED ESTIMATION IN VARIANCE COMPONENT MODELS

  • Lee, Jong-Hoo
    • East Asian mathematical journal
    • /
    • 제5권1호
    • /
    • pp.95-110
    • /
    • 1989
  • In a general variance component model, nonnegative quadratic estimators of the components of variance are considered which are invariant with respect to mean value translaion and have minimum bias (analogously to estimation theory of mean value parameters). Here the minimum is taken over an appropriate cone of positive semidefinite matrices, after having made a reduction by invariance. Among these estimators, which always exist the one of minimum norm is characterized. This characterization is achieved by systems of necessary and sufficient condition, and by a cone restricted pseudoinverse. In models where the decomposing covariance matrices span a commutative quadratic subspace, a representation of the considered estimator is derived that requires merely to solve an ordinary convex quadratic optimization problem. As an example, we present the two way nested classification random model. An unbiased estimator is derived for the mean squared error of any unbiased or biased estimator that is expressible as a linear combination of independent sums of squares. Further, it is shown that, for the classical balanced variance component models, this estimator is the best invariant unbiased estimator, for the variance of the ANOVA estimator and for the mean squared error of the nonnegative minimum biased estimator. As an example, the balanced two way nested classification model with ramdom effects if considered.

  • PDF

Mercer Kernel Isomap

  • 최희열;최승진
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.748-750
    • /
    • 2005
  • Isomap [1] is a manifold learning algorithm, which extends classical multidimensional scaling (MDS) by considering approximate geodesic distance instead of Euclidean distance. The approximate geodesic distance matrix can be interpreted as a kernel matrix, which implies that Isomap can be solved by a kernel eigenvalue problem. However, the geodesic distance kernel matrix is not guaranteed to be positive semidefinite. In this paper we employ a constant-adding method, which leads to the Mercer kernel-based Isomap algorithm. Numerical experimental results with noisy 'Swiss roll' data, confirm the validity and high performance of our kernel Isomap algorithm.

  • PDF

STUDY OF YOUNG INEQUALITIES FOR MATRICES

  • M. AL-HAWARI;W. GHARAIBEH
    • Journal of applied mathematics & informatics
    • /
    • 제41권6호
    • /
    • pp.1181-1191
    • /
    • 2023
  • This paper investigates Young inequalities for matrices, a problem closely linked to operator theory, mathematical physics, and the arithmetic-geometric mean inequality. By obtaining new inequalities for unitarily invariant norms, we aim to derive a fresh Young inequality specifically designed for matrices.To lay the foundation for our study, we provide an overview of basic notation related to matrices. Additionally, we review previous advancements made by researchers in the field, focusing on Young improvements.Building upon this existing knowledge, we present several new enhancements of the classical Young inequality for nonnegative real numbers. Furthermore, we establish a matrix version of these improvements, tailored to the specific characteristics of matrices. Through our research, we contribute to a deeper understanding of Young inequalities in the context of matrices.

ON STEIN TRANSFORMATION IN SEMIDEFINITE LINEAR COMPLEMENTARITY PROBLEMS

  • Song, Yoon J.;Shin, Seon Ho
    • Journal of applied mathematics & informatics
    • /
    • 제32권1_2호
    • /
    • pp.285-295
    • /
    • 2014
  • In the setting of semidenite linear complementarity problems on $S^n$, we focus on the Stein Transformation $S_A(X)\;:=X-AXA^T$, and show that $S_A$ is (strictly) monotone if and only if ${\nu}_r(UAU^T{\circ}\;UAU^T)$(<)${\leq}1$, for all orthogonal matrices U where ${\circ}$ is the Hadamard product and ${\nu}_r$ is the real numerical radius. In particular, we show that if ${\rho}(A)$ < 1 and ${\nu}_r(UAU^T{\circ}\;UAU^T){\leq}1$, then SDLCP($S_A$, Q) has a unique solution for all $Q{\in}S^n$. In an attempt to characterize the GUS-property of a nonmonotone $S_A$, we give an instance of a nonnormal $2{\times}2$ matrix A such that SDLCP($S_A$, Q) has a unique solution for Q either a diagonal or a symmetric positive or negative semidenite matrix. We show that this particular $S_A$ has the $P^{\prime}_2$-property.