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CONTINUOUS PROGRAMMING CONTAINING SUPPORT
FUNCTIONS

I. HUSAIN AND Z. JABEEN

ABSTRACT. In this paper, we derive necessary optimality conditions for a
continuous programming problem in which both objective and constraint
functions contain support functions and is, therefore, nondifferentiable.
It is shown that under generalized invexity of functionals, Karush-Kuhn-
Tucker type optimality conditions for the continuous programming problem
are also sufficient. Using these optimality conditions, we construct dual
problems of both Wolfe and Mond-Weir types and validate appropriate
duality theorems under invexity and generalized invexity. A mixed type
dual is also proposed and duality results are validated under generalized
invexity. A special case which often occurs in mathematical programming
is that in which the support function is the square root of a positive
semidefinite quadratic form. Further, it is also pointed out that our
results can be considered as dynamic generalizations of those of (static)
nonlinear programming with support functions recently incorporated in
the literature.
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1. Introduction

Chandra, Craven and Husain [4] obtained necessary optimality conditions
for a constrained continuous programming problem having term with a square
root of a quadratic form in the objective function, and using these optimality
conditions formulated Wolfe type dual and established weak, strong and Huard
[13] type converse duality theorems under convexity of functions. Subsequently,
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for the problem of [4], Bector, Chandra and Husain [1] constructed a Mond-
Weir type dual which allows weakening of convexity hypotheses of [4] and
derived various duality results under generalized convexity of functionals.
Mond, Chandra and Husain [15], and Mond and Smart [16} examined invexity
in continuous programming. As the concept of invexity has allowed the
convexity requirements in a variety of mathematical programming problems
to be weakened, Mond and Smart [16] derived the duality results for a class
of nondifferentiable continuous programming problems considered in [4] with
Wolfe and Mond-Weir type duals. The popularity of this type of problems
seems to originate from the fact that, even though the objective function and or /
constraint functions are non-smooth, a simple representation of the dual problem
may be found. The theory of nonsmooth mathematical programming deals with
much more general types of functions by means of generalized sub-differentials (5]
and quasi-differentials [10]. However, the square root of a positive semidefinite
quadratic form is one of the few cases of a nondifferentiable function for which
one can write down the sub or quasi-differentials explicitly. In this research, we
replace the square root of quadratic form by the support function of a compact
convex set that is somewhat more general and for which the subdifferential may
be simply expressed.

In this exposition, we derive Fritz John and Karush-Kuhn-Tucker type
necessary optimality conditions for a nondifferentiable continuous programming
problem in which nondifferentiability enters due to appearance of support
functions in the integrand of the objective functional as well as in each constraint
function. The Karush-Kuhn-Tucker optimality conditions are also shown to
be sufficient under suitable generalized invexity hypotheses. As an application
of these necessary optimality conditions, Wolfe and Mond-Weir type duals are
formulated, and weak, strong and Mangasarian [13] type strict converse duality
theorems are proved. Further, in the spirit of Bector et al. [2] and Xu [18], a
mixed type dual is proposed and suitable duality theorems are established. It
is also indicated that our results can be regarded as dynamic generalizations of
those of (static) non-linear programming recently studied.

2. Prerequisites

Let I = [a,b] be areal interval; f : IXR"XR™ — Rand g : IXR"xR"™ —» R™
be continuously differentiable functions. In order to consider f(t,z(t),z(t)),
where z : I — R™ is differentiable with derivative #, denote the partial
derivatives of f with respect to x and # respectively by

_Jor eft . _[of  af)"
fz”‘{'a?v"')ﬁ] an fi_[gjj‘-l-"“’ﬁ] .

The partial derivatives of g are similarly defined using matrix with m
rows instead of one. Let C(I, R™) denote the space of continuous functions
¢ : I — R™, with uniform norm; let C (I, R™) denote the cone of non-negative
functions in C(I, R™). Let X denote the space of piecewise smooth functions
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z : I — R™ with the norm ||z| = ||z|| + ||Dz| ., where the differentiation
operator D is given by

¢
y=Dz < z(t) = a+/ y(s)ds

a
and z(a) = «, z(b) = B are given boundary values. The boundary conditions
z(a) = a, z(b) = B on X may be replaced by z(a) = 0 = z(b), by a shift
of origin. It is convenient to so define X in the proof of Theorem 1 of the
forthcoming section; the original problem is recovered by a converse shift of
origin.

We review some well known facts about a support function for easy reference.
Let K be a compact convex set in R™ then the support function of K is defined
by

s(z(t)|K) = max{z(t)Tu(t) : v(t) € K,t € I}.

A support function, being convex and everywhere finite, has a subdifferential
in the sense of convex analysis. From [17] subdifferential of s(z(t)|K) is given
by

Os(x(t)|K) = {2(t) € K,t € I such that z(6) T 2(t) = s(z(t)| K)}.

In the subsequent analysis of this research, we shall need the following

definitions of invexity and generalized invexity.

Definition 1. If there exist a vector function n = n(t,z(t),u(t)) € R™ with
n =0 at t if z(t) = u(t) for t € I such that for a scalar function h(t, z(t), Z(t)),

the functional H(z) = / h{t,z(t), £(t))dt satisfies.
!

H(e) = (> [ [7"halt,u), 46 + (Dn)Tha(t u(t) 6(0)

then H is said to be invex at u with respect to 1.
H is said to be strictly inver with respect ton at u if for allz € X, z # u,

H() — H) > [ [ halt,u(t),50) + ()bt ule) (o)) .
The functional H is said ’go be pseudoinver at u with respect to n if
[ [ w2 56 + (D) st ) ) e 2 0
= I-;(:z:) > H(u)
and H is strictly pseudoinver with to n at u if, for all z € X and z # u,
/ [0 bt w(2), (6) + (D)7 (e, u(t), i0) ] e > 0
= I; () 2 H(u).

The functional H is quasi-invex with respect to 7 if

H(z) < H(u)
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= /I [UThz(t,U(t),ﬁ(t)-F(Dn)Thi(t,u(t),d(t))]dtSO.

As in Ben-Israel and Mond [3], all pseudoinvex fucntionals are also invex.

3. Continuous programming problem and optimality

Consider the following nondifferentiable continuous programming problem
whose necessary optimality conditions of both Fritz Hohn and Karush-Kuhn-
Tucker types will be derived in this section.

Problem (CP) : Minimize/l[f(t,x(t),a'v(t)) + s(z(t)|K)|dt,

zeX

subject to

z(a) = a, z(b) = G, (3.1)

¢, z(t),2(t)+s(z(t)|C?)) <0, j=1,2,...,me I, (3.2)
where f and g are continuously differentiable and each C7, (j = 1,2,...,m) is
a compact convex set in R".

Theorem 1 (Fritz John Necessary Optimality Conditions). If the problem (CP)
attains o minimum at x = T € X, then there exist v € R and piecewise smooth
vector functions X : I — R™ with S\(t) =: (X’(t), A @NT 2T — R™ and
w I — R" j=1,...,m such that

(b, 8(2), 5(2) + 2B + D N (D)lgd (¢, 2(t), £(t)) + 77 (2)]

j=1

= D|fa(t, £(2), 2(t)) + A(t)T 92 (¢, &(2), 2(2))}, t€ [, (3.3)
DN (t)]g? (4, 2(t), 3(t) + E() @ ()] =0, tel, (3.4)
7=1

Z(t)"z(t) = s(Z(t)IK), tel, (3.5)
zt)Tw (t) = s(z(t)|C), j=1,2,...m, tel, (3.6)
Zt)e K,w'(t)eC?, tel, j=1,2,...,m, (3.7)
(1LA1) 20, tel, (3.8)
(1, A(2) #0, tel (3.9)

Proof. The problem (CP) may be expressed as (PE).

Problem (PE) : Minimize ¢(z) = F(z) + Q(z),
subject to
G(z)erl
zeX
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in which
Fls) = /I £t 2(t), £(0)dt;
Qe) = [ s@EiRd 6 X -o,R
I

is given by (for all t € I, x € X), GI(z)(t) = ¢*(t,z(t),2(t)) + s(z(t)|CP),
ji=12,...,mandI'=C{I,R™).

From {9, Theorem 3], the Fritz John necessary optimality conditions for (PE)
to attain a minimum at £ = Z are the existence of Lagrange multipliers v € R,
p=1(p,...,p™)T € T* (where I'* is the dual cone of convex cone I') satisfying

06194(2)+Y_8(PG)@), 0=)_FGI@), (1.9)20, (1A)#0.  (310)
j=1 j=1

]—_"

The cited theorem requires certain convex sets to be weak * compact; this
is automatic for (CP). Here 8(p” G)(Z) denotes subgradient for nearly convex
function (see [9]).

Since f(t,...) is continuously differentiable, F'(Z) is given ([8], p. 16) by

(Vve X),F'(@)= /I [f2(t, 2(t), Z(£))B(t) + f2(t, 2(2), 2(2))0(t)]dt (3.11)

Assume now, subject to later validation, that p € I"can be represented by a
measurable function A : I — R™ with A(t) = (X (t),...,A™(t))7 satisfying,

(V¢ € CLR™), (p.C) = /; AT (). (3.12)

Define the convex function 7, : R® — R by n:(v) = s(v| K). From [17], its
subdiflerential,

on(v) = {zIz €K, nn(v) = :/Tz}. (3.13)

Now Q(z) = / ne(z)dt. From [6, Theorem 3], we have,
1

Yy €0Q(Z) & {(Vt € I),0(t) € On(Z), (y,v) = /}a(t}T'u(t)dt} (3.14)
with o : I — R™ measurable, namely o(t)7 = z(t) t € I, from (13).

Let &(t,x(t)) = s(z(t)|C), for z € X, t € I, where s(g:(i)iC(')) denotes the
vector support function whose jth component is s(z(t)]JC?). Then

oTE(z) = /1 AOTE(, 2(t))dt. (3.15)
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Denote by 9. the Clarke generalized gradient [5] with respect to x. Then

8(M)TE(t,2(2) C Zac (¥ ()€ (t,2(2)),

m

= 3 V()]0 (sgn(N (£)€ (¢, 2(1))
j=1

= Z ) sgn(M (£))8c(€ (8, z(1))). (3.16)

The above is possible by using the representation of 8;(-) as the convex hull
of limit of points of gradients at smooth points near z. Here ) denotes the
algebraic sum of sets. Since &7(t,.) = s((-)|C?) is convex, we have for each
je{1,2,...,m},

0.8 (¢ x(t)) = 08 (tx(t))
= {w ()w(t) € C7,&(t,xz(t)) = 2(t)Tw (t),t € I}. (3.17)

From [6], it implies that ¢ € 8(pT¢)(, z) if and only there exist a measurable
function p: I — R™ such that

(V £ € D), (t) € Bu(t,2(2)); (¥ v € X), (g, ) = /I T u(t)o(t)dt.
Here from (16) and (17), p(t) = wi(t),t €1, j =1,2,...,m. Therefore
AT = {7 < 6"C)E)
Z / T gu(t, 30 2O)0(8) + 928, 2(2), £(2))o 1)

+w (t)Tv(t)]dt. (3.18)
Using (11), (13), (14) and (18), the relation

0 € ¥0¢(Z) + ZB(/‘)’C’)(E) of (10) yields that for each v € X,

j=1
m

¥(f=(t, 2(2), &()) + 2(t)) + Z 1)(gh(t,2(2), 2() + @' (1)) ()
I

T a(6,3(0),3(2)) + A0) gt a-c(t),z(t»«'z(t)] dt =

This, on integration by parts gives,

/, [*‘r(fz(t,a“v(t),f(t))ﬂ )+ S MOl 30, 30) + 07 (8)

j=1
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Dt 30, 3(0) + A0 ga f(t),f(t))] oty

+(7fa(t,2(2), 2(2)) + A1) g2 (8, 2(2), E(1))o(t)

which by using v(a) = 0 = v(b) implies

/I ["r(fx(t, 20, 2(1)) + 2() + 3 M ()(gl(t, 2, £(1)) + B (1)
i=1

— D(Ff: (¢, Z(t), Z(t)) + +;\(t)Tg¢(t,5:(t),i(t))] v(t)dt =0 (3.19)

Since this integral vanishes for any v € X by Lemma 2 ([7] p. 500), it follows
that

Ms

T f2(t, (1), (1) + 2(t)} (8){gs(2, 2(t), E(t)o(t)) + @ (2)}

= D{¥fs(t,Z(2), ())+5\()gz(t$() z(t))}, tel

The cited Lemma, 2 [7] assumes that the expression in the square bracket of (19)
is piecewise continuous, but this readily extends to measurable. This validates

(3).
Also Z 7 G? (%) = 0 alongwith Z(t)Tw (t) = (Z(¢)|C?) of (17) yields

/ N (t)[g' (¢ I(t)) + 2(t)Tw’ (t)]u(t)dt = 0.
By the apphcamon of the above-cited lemma, this gives
Z A () [ t),2(1)) + 2(t)"w’ (t)] =0, tel.

This proves (4).

In order to validate the representation of p by a function A(:), it is to be
noted here that the proof leading to (3) and (4) remains valid, without this
assumption, if A(*) is regarded as a Schwarz distribution. However, (3) and (4)
constitute a system of first order linear differential equations for /_\(-), given T, z
and @/, (j = 1,2,,...,m), and therefore, possesses a piecewise smooth solution
A(-). Then from (3) and (4) z and @7, j = 1,2,...,m are also piecewise smooth.
The conditions (5), (6) and (7) are obvious from (13) and (17). The conditions
(8) and (9) follow as in (8, p. 59].

Hence the above analysis establishes the theorem fully.
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The minimum Z of (P) may be described as normal if ¥ = 1 so that the
Fritz John conditions (3)—(9) reduce to the Karush-Kuhn-Tucker optimality
conditions. It suffices for ¥ = 1 that Slater condition [13] holds at Z. O

Theorem 2 (Sufficient Karush-Kuhn-Tucker optimality conditions). If there
exist T € X, feasible for (CP) and piecewise smooth vector functions zZ: I — R",
X: T — B™ with M\t) = AMt),...,A"NT and @' : I — R™, j =1,2,...,m,
such that

fo(t,3,8) + 2(0) + YV (0)|g(6,5,8) + @ (1)

i=1
- D[ £t 7,3) + AT (t)g(t, 7, f)} tel, (3.20)
i Mg (t,%,2) + 20T () =0, te I, (3.21)
j=1

#(t)Tz(t) = s(Z(t)|K),t € T (3.22)
()T (t) = s(@(t)|C7),t € 1,j =1,2,...,m (3.23)
(tyeK,tel (3.24)
W (t),e i telj=1,2,....m, tel (3.25)
At) >0, tel, (3.26)

and if
(i) /I {f (tyy) + ()7 2(8) + ;:’:1;\,- &) (82,8 + ()T (t))}dt

is pseudoinves with respect to n = 7(t,z,Z), for all N(t) € R and
w(t)e R*, j=1,2,...,m, or

(ii) /1 [f(t,-,-)%— (-)TZ(t}]dt pseudoinver and
i / M) (g, -) + ()T@ (t))dt is quasi-invex for all Z(t) € R™,
=171

M(t) € R and @ (t) € R*, (j = 1,2,...,m) with respect to the same
n=n(t,z,Z), then T is optimal for (CP).

Proof. (i) From (20), we have

/I " {fz(t, z,%) + 2(t) + fj N (D)(gl(t,2,2) + @ (¢))

i=1

~D(1t,3,8) + ¥ (0 gs(t,3,) =0



Continuous programming containing support functions 83

On integrating by parts, this yields,

/ [nT{fz(t,f:,i) + Z(t) + i N(t)(gi(t,z,5) + ﬁ)j(t))}
I o
+(D)T {f:(t,2,5) + M (t)T g4 (t, a"c,:i)}] dt

t=h
=10.
t=a

Using the fact that n(t,z,Z) = 0 for z(t) = Z(t) at t = a and t = b in view of
z(a) = a, z(b) = B, and Z(a) = a, Z(b) = B, the above equation becomes

f[#fpsasesos St s

(D) {falt, 3, 5) + M) ga(t a‘ca‘s)}]dt:o.

0" {f:(t, 2, %) + Mt)" 92 (2, %, £)}

By pseudoinvexity of

[{t+ 0730+ R0 6.+ (070 0) Ja

j=1

for Z(t) € R*,t € IN(t) € R and @/ (t) € R™,j = 1,2,...,m,t € I this implies

/ { (t,z, &)+ z(@t)T Zm: W' (t, z, ) +x(t)TwJ‘(t))}dt
I j=1

> /{f(tmx)+w(t)T t)+Z)\’t)g’(tacz:)+x() ())}dt

j=1

which, because of z(t)Tz(t) < s(z(t)|K) and z(t)Tw/(t) < s(x(t)|C?) with
Z(t) € K and @/ (t) € C?, (j = 1,2,...,m) together with (20) and (21) gives

/1 {f(t,x,i) + s(z(8)| K) + i N () (¢, 3) + S(w(t)ICj))}dt

j=1
J1s.2.8)+ stawim)ar
This, because of (24) and (2) implies that
/{fta: £) + s(z()|K) }dt>/{f &, 3) + s(@ ()| K)}dt.

This implies that under the stated pseudinvexity condition, I is indeed an
optimal solution of (CP).
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(i) Assume that Z is not optimal for (CP). Then there exists z feasible for (CP),
with = # Z such that

/1 F(t, 7, %) + s(@(t)| K)]dt < /1 74,2, ) + s(2(t) | K )]dt.

Since z(t)T2(t) < s(z(t)|K) and Z(t)7 2(t) = s(z(t)|K), for Z(t) € K, t € I,
so this becomes /[f(t, z,z) + ()T Z(t)|dt < /{f(t,a‘c,f:) + Z(t)Tz(t))dt. As
I I

/ [f(t,-,-) + ()TZ(t))dt is pseudoinvex with respect to 7, from the above
I
inequality, it follows that that

/1 0T (f=(t, %, %) + 2(t)) + (D) T f2(¢, %, 2))dt < 0.
This, on integrating by parts, gives
[ S6.3,) + 3(0) - D10, 3,8t + 77 3, D <O
Using n =0 at t = a and ¢ = b, this reduces to
/1 n" [(fe(t,Z, %) + Z(t)) + Dfs(t, Z,%)]dt < 0. (3.27)
Now from (2) and (26), we have
i [P0 6,09+ a0 < é [P s+ 20" 0

This, in view of z(t)T@’(t) < s(z(t)|C?),wi(t) € Ci,t € I, j = 1,2,...,m
yields,

i / N(&)(¢ (¢t z, %) + z(t)Twi (t))dt
j=171

= > [Fedead) a0 e @ <o
j=1

This, because of quasi-invexity of Z / M) g (¢, -) + ()T (t))dt with
=171

respect to 7 implies

/ [nT{ S (1)(ed(t,2,5) + @ (t))} + (Dn)T ()T ga (1,3, 3))| dt < 0.
=1
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This, as earlier, on integrating by parts and using n =0, at t = a and ¢ = b,
gives

/’7 [Em: JOICACER. +wj(t))_D(S\(t)Tg:'c(t,.’i‘,.’i‘))jidtSO. (3.28)
1 i=1
Combining (27) and (28), we have,

[ [fm(t, 5,8) 42+ 3 WO (t,2,3) + (1)
j=1

— D(f:(t,%,2) + A(t)T g (t, Z, :z))] <0. (3.29)

Now pre-multiplying (18) by n7 and then integrating we have
[ o)+ +§jA’ e2(t,2,2) + 5 (1)
1

~D{f(t,8,)+ Xe)70:(0,8,8) |t = 0
This contradicts (29). Hence Z must be optimal for (CP). O

4. Duality
The following problem is formulated as Wolfe type dual for the problem (CP).

Dual(WCD) : Maximize(u, ), 2,0, ..., w)

ueX, Az, w
-/ [f(t,u,u) Fult)z()
I
+ZM (67 (8, u, 1) + u(t)Tw! (t)) | dt
subject to
u(a) = o, u(b) = (4.30)
Faltyuy @) = 2(8) + D M (0)(gd (b u, i) + w/ (1))
j=1
= D(fs(t, u,u) + A(t)Tga(t,u,0)), t € T (4.31)
z(t) € Kiw(t) € C7,j=1,2,...,m, (4.32)
At) >0, tel (4.33)
Theorem 3 (Weak duality). Let x be feasible for (CP) and (u, A, z, w* w™)
feasible for (WCD). If for all feasible (z,u, A, z,w",...,w™) and with respect to

n =t z,u)
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(i)/}[f(t,-,-)+(-)Tz(t)]dt andé/lz\j(t)(gj(t,',~)+(-)ij(t)>dt are invez,

or
(ii) /l [ ft)+ ()T 2(t) + ]il N, + () w (t))] dt is pseudoinver,
then inf(CP) > sup(WCD).
Proof. (i)
$(z) —Plu, Az, 0, .., w™)
= [1t.2.8) + st@ola

—/I[ flt,u, ) + u@) Tz +ZA’ t)(g (t, u, %) + w(t)Tw? (t)) | dt
——i/)\j(t)(gj(t,u,'it)—i-u(t) w (t))dt
j=1"1
2 [ | atw0) +20) + 001t 01
=Y [ MO st ) + u(e) v )
j=1"1

(Using invexity of /[f(t, o)+ ()T 2(t))dt
1
and z(t)Tz(t) < s(z(t)|K) for z(t) € K, tel)
= [ A" Ufalt,5,8) + 2(0) = D)t 7 ot )2
I

-3 [ 206 €0+ 0w W),
j=171
(using integration by parts).
— [ {falts w0+ 20 - Dt i)
I

- i / M (@)(g* (¢, u, 1) + u(t)Tw’ (2))dt,
j=11

(using n=10 at t=a,t=10)

- nT{ N ()96, ) + 0 (8) — DOT (B)gs ¢, a»}dt

7=1

Z / )(¢° (t,u, w) + u(t)Tw’ (t))dt, (using (29))
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= - /I " [Z N ()(g2(t u, 1) + 1w (2)) + (D) T (AT (2)g (¢, w, a))} dt

i=1
—n7 (A(t)ga (8, u, 0))i= Z/)\J 7(t,u, 1) + u(t)Tw’ (t))dt,
(using integration by parts)

=~ /1 [nT SN ()l (t,u, @) + i () + (DT AT (2)gs (2, v, u))] dt

j=1
=Y [N i) + ) v )
=171
(using n=0at t=a,t="b)

>— Z/,\J I(t,z, %) + z(t)Twi(t))dt.

(using invexity of Z /I X ()97 @, ) + () Twi(t))dt)

2 / (o' (t,2,3) + s(z(t)|C))dt

(usmg the fact that x(t)Tw’ (t) < s(z(t)|CY),
for wi(t) € C9,j=1,2,...,m)
Since M > 0, ¢/(t,z,%) + s(z(t|C?) < 0, t € I, j = 1,2,...,m, the
above inequality implies ¢(x) — ¥(u, A, z,%’,...,w™) > 0. That is, inf(CP) >

sup(WCD).
(ii) From (31), we have

0= f, " [ Folt i) + 2(8) + 3° M(0) (g 8w, 0) + w3 ()

J=1

~D{fsltyuy ) + MO g3t u)}} dt
/1[ {f,(tuu +2(t +Z,\’ gxtuu)-{—w’(t))}

+HDOT(F )+ A0 0t 0}

=0 { fat @) + M0) g (¢, w, 0)}HEZS
(by integrating by parts)

=/I[nT{f,(t,u,ﬂ)+z(t)+f:;\j(t)(gi(t,%d)-i-wj(t))}

j=1
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+(D)T{ ft, u, 1) + M) T 92 (¢, u, u)}] dt.
(using =0 at t=a and t=10).
By pseudoinvexity of

/ {f(t, )+ O + SN ()6 (6 2,8) + (-)wa(t))}dt,
this gives

/{ f(t,3,2) + z(t)T +ZAJ (e (t, 7, &) + o(2) wj(t))}dt
I

j=1

> /1 { Ftu, )+ u(®)T2() + > N (8)(¢7 (tu, 4) + u(t)T o (t))}dt.

j=1

In view of z(t)T2(t) < s(2(t)|K) and z(t)Tw (t) < s(z(t)|C?), 1 = 1,2,...,m
from this, we have

/I{f(t,x,z')+s( )1 K) +Z,\J )G (t, 2, &) + s(x ()[C’j)}dt

j=1

> / { Ftu,n) 4+ u(t)z(t) + i/\f ()(g” (¢, u, @) + u(t)Tw! (t))}dt
I

i=1
By feasibility of = for (CP) along with (31), this implies

[to8)+ state)ixy e
> /{f(t u, i) + u(t) T 2(t) +Z/\’ 3t u, ) + u(t) wj(t))}dt.

That is, inf(CP)> sup(WCD). O
Now we further weaken the invexity requirements by formulating Mond-Weir
type dual to the problem (CP).
Consider the following problem:
Dual (M-WCD) : Minimize¥(u, A, z,%/,...,w™) = /[f(t,u,u) + u(t)T z(t)]dt
z€X,\,z,w I

subject to
u(a) = a:“’(b) =5, (434)

fa(t,u, ) + 2(t) + f}x’(t)(gi(t,u,a) +w(t))
i=1
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= D|(fa(t,u, ) + At) g2 (t, v, 1)), t € 1, (4.35)

Z/AJ Tt u,4) + w(®)Tw? (¢))dt >0, t €I,  (4.36)

Et)EK,wJ()EC’J,('=1,2,...,m), (4.37)
At) >0, tel (4.38)

Theorem 4 (Weak duality). Let z be feasible for (CP) and (u, A, z,w?,...,w™)
be feasible for the problem (M-WCD). If for all feasible (z,u, ), z,w!,...,w™),

/ [f(t, Y -)+(»)Tz(t)} dt is pseudoinvez and Z//\j (t)(g (t, )+ () Tw (t)) dt
I /I
is quasi-inver both with respect to n = (t z,u) for z(t) € R", A(t) € R™

with A(t) = (A\Yt),...,A™()T and, w(t) € R*, (j = 1,2,...,m), then
inf(CP)>sup(M-WD).

Proof. From the feasibility of z for (CP) and the feasibility of (u, ), z, w!, w?,
w™) for (M-WCD), we have

m . ) ' i m ; ' . r)
j; /r MO t28) + (0] at < ; /1 X (6)] g7 (8, 0) (8w (1) at
This, in view of z(t)Twi (t) < s(z(t)|C?), 1=1,2,...,m, t € I, yields

Z/w) (t,2,) + 2(t)T2(0)]dt

< z_j [ X001+ e ()

By the quasi-invexity of Z / M®)g'@,-,) + ()Tw? (t)]dt with respect to 7,
el {

this implies
[l TZAJ (020,:8) + w2 (0) + (D) M) (00| e <.
This, by integration by parts, gives,

/ [nT S A (0) (g w,8) + w (1)) — DO g (t,u,a»] dt

j=1
t=b

+0T (A()7 g2 (t, u, )

t=a
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from which, on using n = 0 at t = a, t = b, and (33), we get

/InT[fi(t,x,a‘c)—i—z(t)—-Dfi(t,z,iﬂdt > 0.

This, as earlier gives,

/ 07 (f (6,2 8) + (1)) + (D) fa(t, 2, 2)]dt > 0,
I

which, by pseudo-invexity of / {f(t,) + ()T z(t)}dt implies,

/[fta:w+x dt>/[f(tuu+u (t)]dt.

Since z(t)Tz(t) < s(x(t)|K), therefore, this becomes

[+ s > [ (5)+u(t ()
I

That is, inf(P)> sup(M-W D). O

A combined strong duality theorem for pairs of Wolfe type dual problems and
Mond-Weir type dual problems is established in the next theorem.

Theorem 5 (Strong duality). If Z is an optimal solution of (CP) with the
normality condition satzsﬁed at T, then there erist piecewise smooth X : I — R™
with AT(t) = (Al(t) A™(t)), z:I - R" andw’ : I - R", (j=1,2,...,m)
such that (Z,\, z,@0", ..., 'm) is feasible for (WCD) as well as for (M-WCD)
and in either case, the objectz’ve value of each of the duals is equal to that of the
primal. If the hypotheses of Theorem 3 are satisfied then (T, A, Z,@%,...,7™)
is optimal for (WCD) and if the requirements of Theorem 4 are fulfilled, then
(Z, A, Z,%",...,@™) is an optimal solution of (M-WCD).

Proof. Since Z is optimal for (CP) and also normal, Theorem 1 implies that
there exist Lagrange multipliers A : I — R™ j = 1,2,...,m such that
(Z, A\, z,@",...,@™) is feasible for both dual problems. Of course, for the
problem (M-WCD),

zmj X ()’ ((t.2,2) + 3070 @1) =0, tel,

= /)\’ I(t,Z, %) + 2(t) 0 (t))

Consider

’lp(i’ X’ z”l'T)l" . )mm)
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[f(t 7,1) + 2()TZ(t) + Z,\J t)g’ (t, %, %) + Z(t) 7@ (t)) | dt

j=t

J
_ /1 [f(t,i:,i)-{-i(t)Tz(t)]dt,

(since Y M(t)(¢’(t,2,2) + &) 0! () =0, t € I)
Jj=1
- / F(6.2,3) + s(B() K )\dt
I
(since Z(t)Tz(t) = s(z(t)IK), t € I))
= ¢().
Now, if invexity and pseudoinvexity hypotheses of Theorem 3 are satisfied,
(Z,\ 2z, w!,...,@™) is optimal for (WCD) by weak duality, and, if pseudoinvex-

ity and quasinvexity requirements of Theorem 4 are fufilled, then (Z, X, z,@?,.. .,
@™) by weak duality theorem, is optimal for (M-WCD). a

5. Converse duality

In this section, we present a Mangasarian [13] type strict converse duality for
each pair of the dual problems.

Theorem 6 (Strict converse duality). Let T be an optimal solution of (CP)
meeting normality condition. If (@i, 2,A,%%,...,9™) is an optimal solution of
(WCD) and if with respect to n = n(t,z, 1)

(i) / [f(t, )+ (-)Ti(t)] dt is strictly invez and
1
:\](t) j(t: ' ) + (')T AJ(t) dt is )
; /I (g D ) is invez, or
(ii) / [f(t,-,-)+(-)T2(t)+z:gj(t,-,-)+(-)T12;7(t)] dt is strictly pseudoinver,
1 j=1

then T = 1, i.e., G be an optimal solution of (CP).

Proof. (i) Assume that Z # 4. By Theorem 5, there exist piecewise smooth
X =1 — R™ with A(t) = (/\g) )\"‘()) z: I > R'andw’ =1 —
R" (j =1,...,m) such that (Z,, Z ) is optimal for (WCD). Hence

/ [ f(t,2,%) + 2(t)TZ(t) + Z,\J t,7,%) + 2(t)T 0’ (t))] dt
I

- /I f [(t,ﬁ,ﬁ) +a(t)T2(t) + Z N (£)(g7 (¢, i, 1) + (k) T (t))] dt  (5.39)

i=1
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By strict invexity of /[f(t, o) + ()T 2(t))dt, we have
1

/ [F(t,5,3) + 5)T5(t)]dt — / (F(t 5 8) + a(t) T3 (&) dt

I I
> /, 07 (falty 8, 8) + 3(8)) + (D) fi(t, 2 )}t (5.40)

m
Also by invexity of Z / M (t)(g? (t,-,-) + ()T (¢))dt, we have
1 JI

5. [Houwsnesursiom
_ fv:: /I 3 (g (¢, 0, 8) + ()T (2))dt

> 3 (W)
> /I T3 () (93 (6,8,
+@7 (t)) + (DT (A@)T gs(t, @, 4))]dt (5.41)

Addition of the inequalities (39) and (41), gives
/ [f(t 3,3) + 3(6)T5(t +}:Af (g (t,5,5) + 7(t )Tw’(t))]

~ / [ (t, 4, 4) + a(t) T 5(t) + Z,\J ()% (t, &, &) + ()T (t))] dt

j=1
/[77 {fz(tuu +Z/\] (g2(t, 0, 11) +w’())}dt
+(Dn)T{ £ (t,@,4) + A1) g2 (t, 4,0 )}dt

= /IUT[{fz(t,a,ﬁH2(t)+f:i\"(t)(gi(t,ﬂ,ﬁ)+wj(t))}

J=1

~D{fs(t, i, 8) + A0 s 0,4, a)}] d

t=a

0T {falt 8 6) + MO T gs(t, )}
t=b

(by integration by parts)
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/I Hfz(tuu)—i—z +Z,\J gmtuu)—}-uﬂ(t))}

~D{fs(t,0,1) + A(t) g,;.(t,ﬁ,ﬁ)}} dt,(since n=0att=a,t=0b).

This, in view of equality constraint (39) of the dual problem, implies that

/I{f(tm)m(

)+ SN (45, 5) + 3070 ))} dt

j=1

= / [fz(t,a’:,i') +2(t)TZ(t) + Em: N () (,2,%) + :T:(t)ij(t))] dt,
I
(by 39)).

Since Y X (t)(¢’(t,7,%) + 2(t)"@’(t)) = 0, t € I, (by Theorem 1) and

j=1
()T (t) < s(Z(t)|C7) fori (t) € C7,j = 1,2,...,m, this inequality reduces
to

/,{ (t)" (¢ +Z” ' ((t)ic”))} dt > /1 z(t)T2(t)dt.

This, by (2) and (35), yields /i(t)Té(t)dt > /:E(t)TZ(t)dt. Since for £(t) €
K, a‘c(t)T“() s(Z(t )|K)for2(tl) € K and a'v(t)%i(t) = s(Z(t)|K), this gives
(Z@)|K)dt > / (Z(t)|K)dt. which cannot happen. Hence Z = 4.

(11) Let T # @. Then from the feasibility of (z, A, z,%@!,...,@™) for (WCD),

we have

0= /1 nT{fm(t, a,4) + 2(t) + g N (t)(g (¢, 4) + 0 (8))

_D(fult,,8) + M) st a))}dt

/1[ {fz(tuu + 3(¢ +ZAJ (gh(t, &, 0) + u“)j(t))}

j=1

(O (fs(t,a, ) + M) 9s(t, @, ﬁ))] dt



G4 1. Husain and Z. Jabeen

t=b
, (by integrating by parts)

t=a

_nT(f:i:(t1 ﬂv 'ﬂ’) + S\(t)Tg:c(L'&’ ’&))

This, on using 7= 0, at t = g and t = b, gives
- [ {seai+ 20+ L i@t + o0

+HONT (fat, 5, 8) + At) T g2, 4, &))} dt =

which because of strict pseudoinvexity of

/ { fa(t, @, 1) + ()T 5(t) + i N (t)(¢% (t, %, %) + i(t)Tﬁﬁ(t))}dt
I

j=1

> /{{f(t'&ﬁ +aft z:L: ()97 (¢, 1, 4) + au(t) 'ti)j(t))}dt

From this, as in (i), we have / s(Z(t)| K )dt > / s(Z(¢)|K)dt that cannot happen.
Hence z = 4. ! ! O
We now give the strict converse duality for the Mond-Weir type dual.
Theorem 7 (Strict converse duality). Let the problem (CP) have an optimal
solution T that satisfies normality condition. Let (4,2, A\, @%,...,0™) be
an optimal solution of (M-WCD) and if /; [f(t, )+ (~)T2(t)}dt is strictly

m

pseudoinver and E / M (1) (gj (¢ + ()T (t))dt is quasi-invez for all
1 JI
i=1

M(t) € R and 97 (t) € R™, j = 1,2,...,m both respect to n = n(t, %, 1), then
T =1, i.e., & is an optical solution of (CP).

Proof. Assume that Z # 4. Since Z is optimal for (CP), by Theorem 5, there

exist piecewise smooth A, Z and @', j = 1,2,...,msuch that (%, A, Z,@",...,@™)
is optimal for the problem (M-WD). Thus
/ £(6,7,5) + 2(8)T2())dt = / F(6, 2, 8) + ()T 2())de. (5.42)
1 I

From (2), (36) and (38) along with fact that
z(t)Ta (t) = s(T()|C?), for w(t) €C?,j=1,2,...,m

we have

S [0 63,8) + 500 @)
j=171
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m
<y / N (@)(g7 (8,6 + a(t) T (6))dt
j=1"1

m
This, because of quasi-invexity of Z / N @) (g (t, ) + ()T (t))dt with
/I
respect to 7 implies

/, [nT S N )(ed ) + 9 (2)) + (Dn) (MO g6, a))] gt <0.

j=1
From this, on using integration by parts and then n =0 at ¢t = a and ¢ = b that
gets the integrated part vanished, we have

/ [ZNJ Lt 2,9) +97(t) - D) g (aaﬂﬁsa

This, using (35), gives /nT [(fz(t,ﬁ, &)+ 2(t)) + (D)7 fa(t, 4, ﬁ)] dt > 0 which,

I
as earlier, by integration by parts and then using 7 =0 at ¢t = a and t = b, give
/1 (77 (fo(t, @, &) + 2(t)) — Dfs(t, @, 4))dt > 0,

By strict pseudoinvexity of / [£(t,",) + ()T 2(t))dt, this implies
I

/, F(628) + 20Tl > / [F(t,2,8)) + 4, (6T 2(0)dt
= [irtad)+a@ el Gy @)

This implies / ()T 2(t)dt > / Z(t)T Z(t)dt. This, also, by the same arguments

~

I I
as in the proof of Theorem 6 yields a contradiction. Hence Z = 4, i.e., % is an
optimal solution of (CP). 0

6. Mixed type duality

Following the scheme of formulations in Bector et. al. [1] and Xu [18], we
propose the following mixed type dual (Mix CD) to(CP):

(MixCD) : Ma.ximize/I{f(t,u,'d)-{-u(t)Tz(t)

+ ) M) (g(t, v, b+ u(t) v’ (t))}dt

j€Jo
veE X\ z,w . ™
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subject to u(a) = a, u(b) =0, (6.43)

fz(t,u,a) + 2(¢ +ZA’ (g2 (t, u, ) + w' (1)),
i=1

= D(fa(t,u, 1) + Mt)T gzt u, 0)),t € I, (6.44)
Z/,\J (¢t u, 0+ ut)Tw! (£)dt >0, a=1,...,7, (6.45)
j€Ja
() e K, (t)eClj=1,2,...,m, tel, (6.46)
At) >0, tel, (6.47)

where J, C M ={1,2,...,m},a=0,1,2,...r with

OJazMand Jo[\Ja =0, if a#8.

a=0

IfJo=Mand Jy = ¢, fora=1,2,...,r, then (Mix CD) becomes (WCD). In
case Jy = ¢ and Jo = M, for some « € {1,2,...,1,2}, then (Mix CD) becomes
(M-WCD).

Theorem 8 (Weak duality). Letz be a feasible for (CP) and (u,z, A\, w?,... w™)
feasible for (Mia: C’D) If, for all feasible (z,u,z,\, w',...,w™)

/{f(t, )+ t)+ Z M(t (g] )+ (-)ij(t)) }dt is pseudoinver and

j€Jo

Z //\J at, )+ ()T (t))dt a=1,2,...,7 is quasi-invez with respect
j€Ja
to the same n=n(t,z,u), then inf(CP)>sup(MizCD).

Proof. Since z is feasible for (CP) and (v, z,y, wt,...,w™) feasible for (Mix
CD), we have, in view of z(t)Tw/(t) < s(z(t)|C?), 7 = 1,2,...,m,

Y / M ()7 ¢, x, &) + x(t)Tw? (8))de

J€Ja

< Z/,\’ (7 (t,u, o) + u(t)Tw! (t))dt, a=1,2,...,r

Jj€Ja

By the quasi-invexity of Z /)\’ (@, )+ T w! (t)dt,a = 1,2,...,r, this
j€Ja
yields,

> / {772 (6) (62w, 9) + w7 (1)) + (D) (M () (8w, )}t < 0,

i€Ja
a=12,...,r.
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Hence
S [Vt + o 0)+ 007 a6 w ) <o
jEM~Jp

This, by integration by parts, gives

3 / AT LN (062 (t,2,8) + w4 (£)) — DN (D)ga (t, 7, &)}t
jeEM~—Jo
t=b

+ Z (tgltww)| <O.

JjeEM—Jo t=a
Using n =0 at t = a and t = b, from this we have,
S [0t e + 0 () - DY (B t.3, 2} <0
jEM—Jo
From (44), it follows
/IUT{fz(t, w, @)+ 2(t) + Y N (8)(gh(tu,4) + ' (1)

i€do

0

IA

< DUty ) + 3 V(6 )

Jj€Jo

= [ s 0+ T 06w +wo)

j€Jo

+ (Dn)T{fi(t,u,«z) + > N()gl(t,u, a)H dt
jeJo
t=b

)
t=a

-7 {fmtuu-i-Z)\’ gwtuu))}
Jjedo
(by integrating by parts).

Using n=0at t =a,t = b, we have .
[l {tatwi + 20+ ¥ Vo + o))
1 jedo
+ O t2,)+ T V@80 a2 0
Jj€Jo
This, because of pseudoinvexity of

/I{f(tm-) + ()20 + Y N ) + (')ij(t))}dt

jedo
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yields

/I{f(t z,8)+ 2(t)T2(t) + Y ¥ ()¢ (t,z, +x(t)Tw’(t))}dt

j€Jdo

> Fltou, )+ u®Tz() + > M ()97 (¢ u, b) + u(t)Twi (1)) ydt.
I

j€do

This, from 37 (t)>0 and g(t,2,%) + s(z(t)|C?) < 0 along with z(t)Tw/(t) <
s(z(t)|C7), for wi(t) € C?, j = 1,2,...,m, implies

/ (f(t,3,2) + 2(t)T2(t)}dt
I
> [ {remid a0+ ¥ Ve +uere o)

i€Jo

This, due to z(t)T2(t) < s(x(t)|K), for z(t) € K, t € I, gives

[0+ st
> [ {fewn w0z + ¥ ¥ 0 6+ w07 v 0) Ja

Jj€Jo
That is, inf(CP)> sup(MizCD).

Corollary 1. Let T be feasible for (CP) and (%,Z,y,w?,...w™) be feasible for
(Miz CD) with corresponding objective values are equal. Let the hypotheses of
Theorem 8 hold. Then Z is optimal for (CP) and (Z,Z,§,W,...Wm) is optimal
for (Miz CD).

Theorem 9 (Strong duality). If T is an optimal solution of (CP) and

normal, then there erist piecewise smooth z : I-R"* X : I — R™ with
At) = ()\l(t) A™(@t), and W : I —» R", j = 1,2,...,m such that
(z,2,5,w,..., "”) is feasible for (Miz CD) and the correspondzng objective

values of (CP) and (Miz CD) are equal. If, also, /I{ )+ ()T a(t) +

m

Z M((t)g (t,-,) + (-)ij(t))}dt is pseudoinvez for and

JEJo

Z M) @)+ (OTwi(t)dt, j € Jo, a = 1,2,...,7t € I is qausinver
jedo V1

with respect to the same n=n (t,z,T), then (Z,2,¥,w,...,w™) is an optimal
solution of (Miz CD).
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Proof. Since Z is an optimal solution of (Mix CD) from Theorem 1, there exist
piecewise smooth A\: I - R™,z: I - R"and @’ : [ —» R", (j = 1,2,...,m)
such that

folt,Z z)+z(t)+Z)\-7 t,%,%) + @’ ()
j=1

Y N () (¢, 5 3) + 20 () =0, te ], (6.49)
j=1

(t)T2(t) = s(Z(t)|K) (6.50)
()T (t) = s(z(t)|C9),5 = 1,2,...,m. (6.51)
it) €z, W) €O, j=1,2,. (6.52)
At) > 0. (6.53)

From (49), it implies

Y XN () (o' (t,2,1) + 2(t) 0 () =0,t € I,

j€Jo
and
>N (7 2) +2) D (1) =0,0=1,2,...,7
jeJa
This implies
//\’ (¢ (t,3,3) + 2)TD (t)dt = 0,0 = 1,2,...,7 (6.54)
JEJ
This, together with (48) (52) and (53) implies (Z, Z, 7, @*, ..., w™) is feasible for
(Mix CD). Also

/ { ft.2,8) + 20)T0 () + D NG (¢ 2, 5) + 2(t) 07 (t))} dt
I

Jj€Jo

/ {f(t, Z,z) + i‘(t)TE(t)}dt
I
‘/I{f(tyi,i)“l“s(:f(t)lK)}dt, (from (50))

This shows that the objective values of (CP) and (Mix CD) are equal. If
/{f(t, o)+ ()T () + Z N(t)g (t, ) + (-)ij(t)}dt is psedudoinvex and
I

jed,
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Z /)\’ + ()T wi(t))dt,a = 1,2,...,r is quasiinvex with respect to
J€Ju

the same 7, then from Corollary 1 it implies that (Z, z,,w!,...,w™) must be
an optimal solution of (Mix CD). O

We now present Mangasarian type [12] strict converse duality theorem.

Theorem 10 (Strict converse duality). Let & be an optimal solution of (CP)

and normal. If ('& N ,11)’") is an optimal solution of (Miz CD) and if
/{f(t, )+ t)+ Z t, )+ ()Ta? (t)}dt is strictly pseudoinvez
j€Jo
and Z / N t) + () Tw! (t))dt, a = 1,2,...,r is quasi-invez with
j€da

respect to = n(t, T,4), then T = 4, i.e. 4 is an optimal solution of (CP).

Proof. We assume that T # 4 and show that a contradiction occurs. Since Z is
an optimal solution of (CP) and normal, it follows form Theorem 2 that there
exist piecewise smooth X : I — R™ with A(t) = (A\L(¢),... A\ ()T z: I — R"
and @ : [ - R", (j = 1,2,...,m) such that (%, %, )\, @!,...,%™) is an optimal
solution for (Mix CD) and

itz + s
/ { f6,2,8)+ 30Tz + Y N(t)(g (¢ 3, 5) +x(t)Tw’(t))}

j€Jo

=/{f(t1,u, 4) + a@)T2(t) + Z M ()¢ (¢, @, w) + a(t) u‘;j(t))}dt, (6.55)
1 jedo

-

Also, since Z is feasible for (CP) and (4, 2, A, @?, ..., w™) feasible for (Mix CD),
we have

3 M)t 7,2) + s(3@)|CY)) <0, a=1,2,...,r
j€Ja

This, in view of Z(t)Tw/(t) < s(2(t)|C7), %7 (t) € C7, j=1,2,...,m
— ¥ / M) (¢, 5,3) + 5OTH (E)dt <0, a=1,2,...,7. (656)
j€da
Also,

3 / ()7 (2, 6, &) + 2() T (£)dt > 0, @ = 1,2,. (6.57)
j€Ja
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Combining (56) and (57), we have

5 / 5 (8)(g (8, 7, ) + 3(8) T (1)) de

Jj€Ja

Z/Af )& (1, ) + 2t (0)d <0, @ =1,2,...07

j€Ja

This, in view of quasi-invexity of Z /A’ @t ) + (OTwi@)dt, a =
j€Ja
1,2,...,r with respect to n=n(t,Z, %) gives,

/{an\’ (e, 8,8) + 99 (1)) + (Dm)T (W (T g (8,4, 8)) Yo,

j€Ja
a=12,...,r
= 5 [0 )+ (0) - DA ot 3, )
J€Ja
t=b
+ S T (N0 a)|  a=12...,7
j€Ja t=a

(by integration by parts)
This, on using 1 = 0 at ¢t = b, implies

Z/ T{)\J J t, 4 ﬂ)-}—wf( ) — ()‘J(t)gx( ))}dt<0

j€Ja

a=1,2,...,r
> [r{poeen oo - DEedeui <o
JeM—Jo

This, along with (44) implies

o< [ [{ i+ s+ T V0,60 + 0/ 0)]

j€Jdo

~D{f¢(t,ﬂ,ﬁ) + Z(Z\J’(t)gg(t,a,ﬁ))}]dt

Jj€Jdo
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+on{ 1)+ Y (¥ (06i(0,0,0)
i€Jo

. . -~ . . . t:b

- { e i)+ Y (90000

jedo

t=a

(by integration by parts)
Using n =0, at t = a and £ = b, this gives

/I[ {(fz(tuu )+ () + ) M) (gl(t b, 1) +w’())}

j€Jo
+On){ et )+ 3 (V. 8) b >0
jedo
By strict pseudoinvexity of
J{ie+ 070+ T V0@ + 0Tl
I j€do
with respect to n = n(¢,%,,4,) for (t) € C and @’(t) € Dj, j = 1,2,...,m,
this implies
[{rta0)+ 50720+ T 00)070,5.5) + 5070, 0)
! jeda

> /I{f(tuu )+ )Tt + ) M) thuu)-l-u(t)TwJ())}dt

j€Jo
- /, {f(t, £,3)+ 20720 + 3 W) (6,2,5) + z(t)"aﬂ(t))}dt,

j€Jo
(by (55)).

This, because of Z(t)T 2(t) = s(Z(t)|K) and i N () (4 (t, 7, %) + 2(t)T@ (1) =

j=t
0, t € I, yields

/1 { t)+ Z’\’ i(t,2,2) + Z(t) T (1)) }dt > /1 s(Z(8)| K )dt

Because of Z(t)T2(t) < s(Z(t)|K), 2(t) € K, t € I and Z(t)Td7 (t) < s(Z(t)|C7),
for wi(t) e CI (j=1,2,...,m), t € I, from this we have,

/1 {s(i(t)|K) +Y N(d(t,z,5) + s(:i:(t)le)}dt > /Is(:z‘r:(t)IK)dt.

Jjel
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By $7(t) > 0 and g’(t, %, %) + s(£(t)|C7) 0, t € I, j = 1,2,...,m, this gives,

/ S(@()|C)dt > / s(&()[C)dt
I I
This is not possible. Hence = i i.e. 4 is an optimal solution of (CP). O

7. Special cases

Let for t € I, B(t) and Di(t), (j = 1,2,...,m) be positive semidefinite
matrices and continuous on I. Then (z(t)T B(t)z (1&))1/2 = s(z(¢)|K), t € ] where
K = {B(t)2(t)]2(t)" B(t)z(t) < 1,¢ € I} and (2(t)7 DI (t)a(t))'/? = s(2(2)|C?),
J=12,...,m, t € I where C”—{DJ() I ()|w ()T DI(t)wi(t) < 1,t € I}.
This is possible from [14].

Replacing the support functions by their corresponding square root of
quadratic forms, we have

Primal (CFy) : Minimize / [£(t,, %) + (2()T B()2(t)) /2)dt
z I

subject to
z(a) = a,z(b) = G,
gtz,2) + ()" D (t)et)* <0,tel,j=1,2,...,m

Dual (WCDy) Maximize /[f(t,u,ﬂ)+u(t)TB(t)z(t)

vEX Az, wh, L w™ S
+Z)\’ (¢ (t,u, %) + u(@®)TDI(t)w! (t)) | d

subject to

u(a) = a)u(b) = f3,

fe(t,u,2) + B(t)2(t) + i X () (gl (t, u, ) + DI ()w (1))
j=1
= D{fs(t,u, %) + Mt)T g (t,u,0)],t € I,
z)TB(t)z(t) <1, tel,
w (DI (i (t) <1, tel, (j=1,2,...m),
Aty >0, tel

Dual(M - WCDyp) : Maximize /[f(t,u, ) + u(t)T B(t)z(t)|dt
I

ueX A\ zwl,..wm

subject to
z(a) = a,z(b) =
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fa(t,u,4) + B(t) +ZA’ gl (t,u,w) + D (tyw (t))

= D[fs(t,u, %) + At) gab(t,u,U)],tGI,
Z/ ()(g3(tu,4) +u()"D (B! ()t 2 0, te I,

z)TB@t)z(t) <1, tel,
W@ TDIt)w(t) <1, tel, (j=1,2,...m),
Alt) 20, tel

The above Wolfe type dual problem (WCDg) and Mond-Weir type dual
problem (M-WCDy) have not been reported in the literature of continuous
programming but if D7(t) = 0,¢ € I and j € {1,2,...,m}, then the Wolfe dual
problem (WCDy) studied by Chandra, Craven and Husain [4] under convexity
while the pair of Mond-Weir type dual problem (M-WCDy), treated by Bector,
Chandra and Husain [1]. The mixed dual (Mix CD) reduces to

(MixCDg) :  Maximize / [f(t,u,ﬂ)+u(t)TB(t)z(t)

ueX )\ z,wl,..,w™

+ D N ()t u,w) + w(t) DYty (2)) |d
j€Jo
subject to

u(e) = a,u(b) = 0,

fe(t,u, @) + B(t) t)+Z,\’ )gl (t,u, w) + DI (t)w? (t))

=D[f,(tuu)+)\() Tgs(t,u,u)), t €1,

T /,\J’ (g7 (&, u, 1) + u()T D (t)w (£))dt > 0,0 = 1,2,.
J€Ja
2(t)TB(t)2(t) <1, tel
WO)TDItwi(t) <1, tel, (j=1,2,...m)
At) >0, tel.
The duality amongst (CPg) and (Mix CDg) can be investigated analogously
to that amongst (CP) and (M-WCD), presented in the preceding section.

8.Related non-linear programming problems

If the time dependency of the problems (CP), (WCD), (M-WCD) and (Mix
CD) is removed, then these problems reduce to the following problem (P;) with
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its duals (WD;) and (M-WD,) recently studied by Husain, Abha and Jabeen
[11], and mixed type dual (Mix D;) studied by Husain and Jabeen [12].

Primal (P;)

Dual (WD)

Dual (M ~ W D;)

Dual (MizD,)

Minimize f(z) + s(z|K)
subject to
¢ (z) + s(2lC?) <0,j =1, 2,.
Max1mlze flu)+uTz+ Z M (g7 (w) + uTw?)

u A z,wl,, ™

subject to

folu) + 24 Y X @)(gl(w) + w’) =
j=1
zeKw el ,j=1,2,...,m
A>0.
Maximize f(u )+ ulz

u,Az,wh, . um
subject to

+Z+Z>‘J 2(u) +w!) =0,

Z/\Ngj(u) +u'w’) 20,
=1
zeK,w €Cj=1,2,...,m
A>0.
Maximize f)+uTz+ Z M (g(u) + uTw’)
ud,z,wl,. . w jicdo
subject to
fo(u) + 2+ Z)\j(gz(u) +uw)=0
j=1
Z M(g(u) + vTw?) > 0,0 =1,2,...,7
Jjj€Ja
zeKweClj=1,2,....,m
A>0.
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