• Title/Summary/Keyword: porosimetry

Search Result 91, Processing Time 0.023 seconds

A Study on the Pore Structure and Compressive Strength of Concrete using Metakaolin (메타카올린을 사용한 콘크리트의 공극구조와 압축강도에 관한 연구)

  • Yeo, Dong Ku;Kim, Nam Wook;Song, Jun Ho;Bae, Ju Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5A
    • /
    • pp.927-934
    • /
    • 2006
  • According to the high demand of concrete structures with high performance, various studies have examined on the high performance concrete, especially high strength concrete. Various admixtures are required to produce high strength concrete and silica fume has been the most popular admixture. Recently, however, metakaolin, which is similar to silica fume in properties but cheaper, has been introduced to high strength concrete. This study conducted XRD and SEM analyses on a cement paste specimens to clarify metakaolin's performance in pozzolan. Additionally, a concrete specimens were fabricated to analyze its pore structure using Mercury Intrusion Porosimetry and its correlation to the compressive strength. In result, it was found that the average diameter of pore reduced and compressive strength increased as more metakaolin content was added. In addition, a regression analysis of $10nm{\sim}10{\mu}m$ pore and compression strength revealed that these two factors had a high correlation of about 0.93 and 10~15% of metakaolin replacement was most appropriate.

Fundamental Properties of MgO Base Ceramic Mortar for Concrete Repair Material (MgO계 세라믹 모르타르를 활용한 콘크리트 보수재료의 기초물성평가)

  • Park, Joon-Woo;Ann, Ki-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.4
    • /
    • pp.407-413
    • /
    • 2017
  • The fundamental property of magnesia phosphate cement (MPC) for concrete repair material was investigated in this research. For mechanical properties, setting time, compressive strength and tensile/flexural bond strength were measured, and hydration products were detected by X-ray diffraction. The specimens were manufactured with dead burnt magnesia and potassium dihydrogen phosphate was admixed to activate the hydration of magnesia and a borax was used as a retarder. To observe the pore structure and ionic permeability of MPC mortar, mercury intrusion porosimetry was performed together with rapid chloride penetration test (RCPT). As a result, time to set of Fresh MPC mortar was in range of 16 to 21 min depend on the M/P ratio. Borax helped delaying setting time of MPC to 68 min. The compressive strength of MPC with M/P of 4 was sharply developed to 30 MPa within 12 hours. The compressive strength of MPC mortar was in range of 11.0 to 30.0 MPa depend on the M/P ratio at 12 hours of curing. Both tensile and flexural bond strength of MPC to old substrate (i.e. MPC; New substrate to OPC; Old substrate) were even higher than ordinary Portland cement mortar (i.e. [OPC; New substrate] to [OPC; Old substrate]) does, accounting 19 and 17 MPa, respectively. The total pore volume of MPC mortar was lower than that of OPC mortar. MPC mortar had the entrained air void rather than capillary pore. The RCPT showed that total charge passed of OPC mortar had more than that of MPC mortar, which can be explained by the pore volume and pore distribution.

1D deformation induced permeability and microstructural anisotropy of Ariake clays

  • Chai, Jinchun;Jia, Rui;Nie, Jixiang;Aiga, Kosuke;Negami, Takehito;Hino, Takenori
    • Geomechanics and Engineering
    • /
    • v.8 no.1
    • /
    • pp.81-95
    • /
    • 2015
  • The permeability behavior of Ariake clays has been investigated by constant rate of strain (CRS) consolidation tests with vertical or radial drainage. Three types of Ariake clays, namely undisturbed Ariake clay samples from the Saga plain, Japan (aged Ariake clay), clay deposit in shallow seabed of the Ariake Sea (young Ariake clay) and reconstituted Ariake clay samples using the soil sampled from the Saga plain, were tested. The test results indicate that the deduced permeability in the horizontal direction ($k_h$) is generally larger than that in the vertical direction ($k_v$). Under odometer condition, the permeability ratio ($k_h/k_v$) increases with the vertical strain. It is also found that the development of the permeability anisotropy is influenced by the inter-particle bonds and clay content of the sample. The aged Ariake clay has stronger initial inter-particle bonds than the young and reconstituted Ariake clays, resulting in slower increase of $k_h/k_v$ with the vertical strain. The young Ariake clay has higher clay content than the reconstituted Ariake clay, resulting in higher values of $k_h/k_v$. The microstructure of the samples before and after the consolidation test has been examined qualitatively by scanning electron microscopy (SEM) image and semi-quantitatively by mercury intrusion porosimetry (MIP) tests. The SEM images indicate that there are more cut edges of platy clay particles on a vertical plane (with respect to the deposition direction) and there are more faces of platy clay particles on a horizontal plane. This tendency increases with the increase of one-dimensional (1D) deformation. MIP test results show that using a sample with a larger vertical surface area has a larger cumulative intruded pore volume, i.e., mercury can be intruded into the sample more easily from the horizontal direction (vertical plane) under the same pressure. Therefore, the permeability anisotropy of Ariake clays is the result of the anisotropic microstructure of the clay samples.

Preparation and Characterization of Biodegradable Superporous Hydrogels (생분해성을 갖는 초다공성 수화젤의 제조 및 특성분석)

  • Yuk, Kun-Young;Choi, You-Mee;Park, Jeong-Sook;Kim, So-Yeon;Park, Ki-Nam;Huh, Kang-Moo
    • Polymer(Korea)
    • /
    • v.33 no.5
    • /
    • pp.469-476
    • /
    • 2009
  • In this study, biodegradable superporous hydrogels(SPHs) with fast swelling and superabsorbent properties were prepared using biodegradable crosslinkers and their physicochemical properties were characterized. A biodegradable crosslinker (PLA-PEG-PLA DA) was synthesized by a ring opening polymerization of D,L-lactide (LA) using hydrophilic poly(ethylene glycol) as a macroinitiator, followed by diacrylation of the end groups for the introduction of polymerizable vinyl groups. Various kinds of hydrogels with different chemical compositions were prepared and characterized in terms of swelling ratio, swelling kinetics, and biodegradation properties. The synthetic results were confirmed by $^1H$-NMR, FT-IR and GPC measurements, and the porous structures of the prepared SPHs and their porosities were identified by a scanning electron microscope and mercury porosimetry, respectively. The physicochemical properties of SPHs could be controlled by varying their chemical compositions and their cytotoxicity were found to be very low by MTT assay.

Adsorption Characteristics of Commercial Wood Charcoal in Korea (I) (국내 시판용 목탄의 흡착 특성(I))

  • Lee, Dong-Young;Kim, Byung-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.1
    • /
    • pp.27-35
    • /
    • 2010
  • To evaluate the basic characteristics and adsorption properties of commercial wood charcoal, we investigated the proximate analysis, porosimetry analysis, methylene blue adsorption, removal ratios of formaldehyde, and removal ratio of ethylene gas. Fixed carbon contents of traditional black and white charcoal, and mechanical charcoal were 51.8~76.6%, 72.9~84.6%, and 48.5~80.3%, respectively. Refining degrees of the most traditional black charcoal were 9, and those of white charcoal and mechanical charcoals were zero. Specific surface area of traditional black charcoal was 0.1~13.7 $m^2/g$, which was quite lower than that of white charcoal (53.2~372.6 $m^2/g$) and mechanical charcoals (224.3~464.6 $m^2/g$). Also, amounts of methylene blue adsorption were quite lower in black charcoal (0.53~1.97 mg/g) compared with white charcoal (2.68~7.68 mg/g) and mechanical charcoal (11.63~26.10 mg/g). Removal ratios of formaldehyde of the black charcoal were 11.4~26.7%, which is quite similar to white charcoal (17.9~34.9%) and mechanical charcoal (5.5~25.8%). Removal ratios of ethylene gas for traditional black charcoal, traditional white charcoal, and mechanical charcoal were 2.2~43.5%, 21.7~39.1%, 21.7~39.1%, respectively. There was no significant difference in the removal ratios of formaldehyde and ethylene gas among traditional black charcoal, traditional white charcoal, and mechanical charcoal.

An Experimental Study on the Microstructure Characteristics of Cementitious Composites by MIP (MIP를 통한 혼합 시멘트계 재료의 미세구조 특성에 관한 실험적 연구)

  • Kim, Tae-Sang;Jung, Sang-Hwa;Chae, Seong-Tae;Lee, Bong-Chun;Woo, Young-Je;Song, Ha-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.533-536
    • /
    • 2008
  • Recently, in Korea, there has been an increasing number of research papers published which are to improve durability of concrete, particularly by analyzing correlation between diffusivity of chloride and porosity/pore size distribution. In these studies, such test methods as mercury intrusion porosimetry(MIP), gas adsorption or image analysis method are used to analyze the microstructure of materials while MIP is most widely used for concrete. This study analyzes the results of porosity and pore size distribution of paste and concrete adding fly ash or blast furnace slag by using MIP equipment which is widely used for determining micro-porosity structure of cementitious materials. A variation in porosity and pore size distribution at the curing day 3, 7 and 28 has been observed by using MIP equipment for cement paste 35%, 40%, 45%, 50%, 55%, 60% of W/C when using $300kg/m^3$ of cement, 35%, 45%, 55% of W/C when replaced 60% with blast-furnace slag, and 35%, 45%, 55% of W/C when replaced 30% with fly ash. For long-term water cured normal OPC concrete and mixed concrete replaced 60% with blast-furnace slag powder, micro-structure of the sample has been analyzed by using MIP equipment when W/C indicated 40%, 45%, 50% respectively and the binder varied $300kg/m^3$, $350kg/m^3$, $400kg/m^3$, and $450kg/m^3$.

  • PDF

Study on Physical and Chemical Properties of CaO-Al2O3 System Melting Compound (CaO-Al2O3계 용융화합물의 물리·화학적 특성에 관한 연구)

  • Lee, Keun-Jae;Koo, Ja-Sul;Kim, Jin-Man;Oh, Sang-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.209-215
    • /
    • 2013
  • This study is aimed to identify the method to use the CaO-$Al_2O_3$ system of rapidly cooled steel making slag (RCSS) as the environment-friendly inorganic accelerating agent by analyzing its physical and chemical properties. The fraction of rapidly cooled steel making slag is distinguished from its fibrous, and the contents of CaO and $Fe_2O_3$ are inversely proportional across different fractions. In addition, as the content of CaO decreased and the content of $Fe_2O_3$ increased, the loss ignition tended to become negative (-) and the density increased. The pore distribution by mercury intrusion porosimetry is very low as compared to the slowly cooled steel-making slag, which indicates that the internal defect and the microspore rate are remarkably lowered by the rapid cooling. To analyze the major minerals the rapidly cooled steel-making slag, XRD, f-CaO quantification and SEM-EDAX analysis have been performed. The results shows that f-CaO does not exist, and the components are mainly consisted of $C_{12}A_7$ and reactive ${\beta}-C_2S$.

Freeze-Thaw Resistance of Alkali Activated Ternary Blended Cement Incorporated with Ferronickel Slag (알칼리 활성화제를 첨가한 페로니켈슬래그 혼입 삼성분계 콘크리트의 동결융해 저항성)

  • Cho, Won-Jung;Park, Kwang-Pil;Ann, Ki-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.2
    • /
    • pp.159-167
    • /
    • 2022
  • The present study assessed the micro structure and durability characteristics of ternary blended cement with different types of alkali activators. Ground granulated blast furnace slag(GGBS) and ferronickel slag(FNS) was replaced until 50 % of the weight of cement. In addition, potassuim hydroxide and sodium hydroxide were used for comparing the properties of different type of alkali activator. Ternary blended cement with alkali activators showed higher peak portlandite peak than that of OPC(Ordinary Portlande Cement) and non activated ternary blended cement. Also, there was no new hydration products in ternary blended cement or/and alkali activators. Based on the mercury intrustion porosimetry(MIP) test result, ternary blended cement increased macro pore while alkali activated ternary blended cement modified pore structure and increased microp pore as compared to OPC as control. Combination with alkali activators is desirable to enhance the compressive strength and freeze thaw resistance.

Durability Evaluation of Cement Concrete Using Ferrosilicon Industrial Byproduct (페로실리콘 산업부산물 활용 시멘트 콘크리트의 내구성능 평가)

  • Chang-Young Kim;Ki Yong Ann
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.89-96
    • /
    • 2023
  • In this paper, a ferrosilicon by-product was evaluated to confirm the feasibility of recycling it as supplementary cementitious material of ordinary Portland cement in concrete. Three different levels of replacement ratio (10 %, 20 % and 30 % of total binder) were applied to find which is the most beneficial to be used as a binder. Ferrosilicon concrete was initially assessed at setting time and compressive strength. Durability was evaluated by the resistance to chloride penetration test(RCPT) and alkali-silica reaction(ASR) with a comparison to silica fume concrete due to their similarity in chemical composition. The porosimetry and X-ray diffraction analysis along with energy dispersive X-ray spectroscopy give information on the microstructural characteristics of the ferrosilicon concrete. It was found that 10 % ferrosilicon concrete has higher strength while 20 %, 30 % have lower strength than OPC concrete. However, chemical resistance to chloride attack is higher when replacement is increased. Compared to silica fume, the durability of ferrosilicon might be less efficient however, it is obviously beneficial than OPC. High SiO2 content in ferrosilicon results in producing more C-S-H gel which could make denser pore structure. Most of the risk of alkali silica reaction to silicate binders through length change tests was less than 0.2 %, and both mortar using ferrosilicon and silica fume showed better resistance to alkali silica reaction as the substitution rate increased.Reuse of industrial waste rather than producing highly refined additives might reduce environmental load during manufacture and save costs.

A Study on Change in Cement Mortar Characteristics under Carbonation Based on Tests for Hydration and Porosity (수화물 및 공극률 관측 실험을 통한 시멘트모르타르의 탄산화 특성 변화에 대한 연구)

  • Kwon, Seung-Jun;Song, Ha-Won;Park, Sang-Soon
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.613-621
    • /
    • 2007
  • Due to the increasing significance of durability, much researches on carbonation, one of the major deterioration phenomena are carried out. However, conventional researches based on fully hardened concrete are focused on prediction of carbonation depth and they sometimes cause errors. In contrast with steel members, behaviors in early-aged concrete such as porosity and hydrates (calcium hydroxide) are very important and may be changed under carbonation process. Because transportation of deteriorating factors is mainly dependent on porosity and saturation, it is desirable to consider these changes in behaviors in early-aged concrete under carbonation for reasonable analysis of durability in long term exposure or combined deterioration. As for porosity, unless the decrease in $CO_2$ diffusion due to change in porosity is considered, the results from the prediction is overestimated. The carbonation depth and characteristics of pore water are mainly determined by amount of calcium hydroxide, and bound chloride content in carbonated concrete is also affected. So Analysis based on test for hydration and porosity is recently carried out for evaluation of carbonation characteristics. In this study, changes in porosity and hydrate $(Ca(OH)_2)$ under carbonation process are performed through the tests. Mercury Intrusion Porosimetry (MIP) for changed porosity, Thermogravimetric Analysis (TGA) for amount of $(Ca(OH)_2)$ are carried out respectively and analysis technique for porosity and hydrates under carbonation is developed utilizing modeling for behavior in early-aged concrete such as multi component hydration heat model (MCHHM) and micro pore structure formation model (MPSFM). The results from developed technique is in reasonable agreement with experimental data, respectively and they are evaluated to be used for analysis of chloride behavior in carbonated concrete.