DOI QR코드

DOI QR Code

Freeze-Thaw Resistance of Alkali Activated Ternary Blended Cement Incorporated with Ferronickel Slag

알칼리 활성화제를 첨가한 페로니켈슬래그 혼입 삼성분계 콘크리트의 동결융해 저항성

  • Cho, Won-Jung (Department of Civil and Environmental System Engineering, Hanyang University) ;
  • Park, Kwang-Pil (Technology Commercialization Business Dept, Green Energy Insititute) ;
  • Ann, Ki-Yong (Department of Civil and Environmental System Engineering, Hanyang University)
  • 조원정 (한양대학교 건설환경공학과) ;
  • 박광필 (녹색에너지연구원 상용화사업실) ;
  • 안기용 (한양대학교 건설환경공학과)
  • Received : 2022.05.20
  • Accepted : 2022.06.13
  • Published : 2022.06.30

Abstract

The present study assessed the micro structure and durability characteristics of ternary blended cement with different types of alkali activators. Ground granulated blast furnace slag(GGBS) and ferronickel slag(FNS) was replaced until 50 % of the weight of cement. In addition, potassuim hydroxide and sodium hydroxide were used for comparing the properties of different type of alkali activator. Ternary blended cement with alkali activators showed higher peak portlandite peak than that of OPC(Ordinary Portlande Cement) and non activated ternary blended cement. Also, there was no new hydration products in ternary blended cement or/and alkali activators. Based on the mercury intrustion porosimetry(MIP) test result, ternary blended cement increased macro pore while alkali activated ternary blended cement modified pore structure and increased microp pore as compared to OPC as control. Combination with alkali activators is desirable to enhance the compressive strength and freeze thaw resistance.

본 연구에서는 보통 포틀랜드시멘트를 사용한 콘크리트와 광물질 혼화재료 및 알칼리활성화제를 첨가한 4종류의 배합으로 시편을 제작한 후 X선 회절분석, 미세구조분석, 압축강도, 동결융해저항성 및 SEM Image 분석을 실시하여 각 배합별 강도발현, 상대동탄성계수, 중량변화 등을 측정하여 기초물성 평가를 진행하였다. 페로니켈슬래그 혼입 삼성분계 시멘트는 보통포틀랜드 시멘트 배합(OPC)과 비슷한 수화물을 생성하는 경향을 보였으며, MgO 성분으로 인한 팽창성 수화물은 확인되지 않았다. 페로니켈슬래그를 혼입 시 3성분계 시멘트(30SP20FN)의 경우 OPC와 비교 시 공극률이 커지는 경향을 보였지만, 알칼리활성화제를 첨가할 경우 공극 분포가 변화하는 경향을 보였다. 또한, 알칼리활성화제의 첨가는 30SP20FN의 장기강도발현을 앞당기는 효과를 보였으며, 18~26 % 가량 강도가 증가함을 확인하였다. 30SP20FN의 경우 dilution effect로 인한 낮은 수화도의 영향으로 동결융해저항성이 떨어졌지만, 알칼리활성화제를 첨가할 경우 높은 상대동탄성계수를 유지하였으며, 동결융해 저항성이 우수한 것을 알 수 있었는데, 이는 변화된 공극 분포 때문인 것으로 사료된다. 본 연구에서 실시한 상대동탄성계수 측정 실험에 사용된 콘크리트 시편 모두 300 사이클에서 상대동탄성계수가 60 % 이상으로 우수한 동결융해 저항성을 나타내었다. 동결융해 작용을 받은 콘크리트의 미세구조를 분석한 결과, OPC 및 30SP20FN 콘크리트의 경우 비정질의 수화물이 서로 결합되어 있지 않고, 미세 균열이 발생함을 확인한 반면, 알칼리 활성화제를 혼입한 배합의 경우 균질한 내부 구조를 유지하였다.

Keywords

Acknowledgement

본 연구는 2019년도 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원을 받아 수행된 연구임(20193210100050, 표층처분시설의 건설 구조체 및 장기 성능 감시 기술 개발).

References

  1. ASTM C (1991). Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing, Annual Book of ASTM Standards, 1, 991.
  2. ASTM D (1994). 4284-03, Standard Test Method for Determining Pore Volume Distribution of Catalysts by Mercury Intrusion Porosimetry, West Conshohocken, PA.
  3. Cho, J.P., Ahn, H.Y., Song, J.H. (2016). Carbon dioxide absorption and physico-mechanical properties evaluation of alkali-activated concrete using industrial by-products, Proceedings of the 2016 Autumn Conference of the Korea Society of Waste Management, 94-95, [in Korean].
  4. Cho, W.J., Kim, H.S., Ann, K.Y. (2020a). A study on the hydration characteristics and fundamental properties of ternary blended cement using ferronickel slag, Journal of the Korean Recycled Construction Resources Institute, 8(1), 39-48 [in Korean]. https://doi.org/10.14190/JRCR.2020.8.1.39
  5. Cho, W.J., Kim, M.J., Kim, J.S. (2020b). Study on the pore structure characteristics of ferronickel-slag-mixed ternary-blended cement, Materials, 13(21), 4863. https://doi.org/10.3390/ma13214863
  6. Cho, W.J., Kim, M.J. (2021). Freeze-thaw resistance of ternary blended concrete using ferronickel slag, International Journal of Concrete Structures and Materials, 15(1), 1-11. https://doi.org/10.1186/s40069-020-00434-9
  7. Huang, Y., Wang, Q., Shi, M. (2017). Characteristics and reactivity of ferronickel slag powder, Construction and Building Materials, 156, 773-789. https://doi.org/10.1016/j.conbuildmat.2017.09.038
  8. Kim, H.S, Lee, C.H., Ann, K.Y. (2019). Feasibility of ferronickel slag powder for cementitious binder in concrete mix, Construction and Building Materials, 207, 693-705. https://doi.org/10.1016/j.conbuildmat.2019.02.166
  9. Kim, J.H., Lee, D.H., Jung, S.H. (2013). Evaulation of adiabatic temperature rise for concrete with blast-furnace slag replacement, Journal of the Korean Recycled Construction Resources Institute, 8(1), 18-24 [in Korean].
  10. Kim, M.J., Hwang, W.I., Cho, W.J. (2022). The influence of alkali activators on the properties of ternary blended cement incorporated with ferronickel slag, Construction and Building Materials, 318, 126174. https://doi.org/10.1016/j.conbuildmat.2021.126174
  11. Korea Standards Association. (2010). KS F 2405. Standard Test Method for Compressive Strength of Concrete, Korean Standards Association [in Korean].
  12. Kyoto Protocol. (1997). Kyoto Protocol to the United Nations Framework Convention on Climate Change, United Nations.
  13. Lee, K.H. (2017). Characterization of flowable fill with ferro-nickel slag dust, Journal of the Korea Academia-Industrial cooperation Society, 18(5), 16-21 [in Korean].
  14. Leng, F., Feng, N., Lu, X. (2000). An experimental study on the properties of resistance to diffusion of chloride ions of fly ash and blast furnace slag concrete, Cement and Concrete Research, 30(6), 989-992. https://doi.org/10.1016/S0008-8846(00)00250-7
  15. Mindess, S., Young, J.F., Darwin, D. (1981). Concrete Prentice-Hall, Englewood Cliffs, NJ, 481.
  16. Paris Agreement. (2015). Framework Convention on Climate Change, United Nations.
  17. Ryu, D.W., Kim, W.J., Yang, W.H., Park, D.C. (2012). An experimental study on the carbonation and drying shrinkage of concrete using high volumes of ground granulated blast-furnace slag, Journal of the Korea Institute of building Construction, 12(4), 393-400 [in Korean]. https://doi.org/10.5345/JKIBC.2012.12.4.393
  18. Sakoi, Y., Aba, M., Tsukinaga, Y., Nagataki, S. (2013). Properties of concrete used in ferronickel slag aggregate, In Proceedings of the 3rd International Conference on Sustainable Construction Materials and Technologies, Tokyo, Japan, 1-6.
  19. Wikipedia. (2022). Carbon Neutrality, Last modified April 17, 2022.
  20. Zhang, J., Scherer, G.W. (2011). Comparison of methods for arresting hydration of cement, Cement and Concrete Research, 41(10), 1024-1036. https://doi.org/10.1016/j.cemconres.2011.06.003