• Title/Summary/Keyword: pore network

Search Result 102, Processing Time 0.033 seconds

Separation and Purification of Useful Proteins Using Hydrogel Ultratiltration

  • Park, Chang-Ho;Son, Chang-Kyu;Park, Jong-Hwa;Chung, In-Sik
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.2 no.2
    • /
    • pp.113-116
    • /
    • 1997
  • The hydrogel process is a different form of ultrafiltration and has been used to separate biological molecules. In this study, the gel pore size was predicted by pulse NMR technique and neural network using a database obtained from gel filtration chromatography and diffusion experiment. Recombinant alkaline phosphatase expressed in insect cells was concentratred 1.5 times by hydrogel ultrafiltration by swelling at 2$0^{\circ}C$ and collapsing at 35$^{\circ}C$ at 53-65% separation efficiency and 78-83% enzyme recovery. Wild and recombinant Autographa californica unclear polyhedrosis viruses (AcNPV) were also concentrated 1.4 and 1.6 times of the feed solution at 48.5 and 60.0% separation efficiency, respectively Hydrogel ultrafiltration appears to be an attractive alternative for the concentration of AcNPV and recombinant proteins from insect cells.

  • PDF

Variation of Porosity and Gas Permeability of Gas Diffusion Layers Under Compression (가스확산층의 압축에 따른 공극률 및 기체투과율의 변화)

  • Lee, Yongtaek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.8
    • /
    • pp.767-773
    • /
    • 2013
  • This study suggested the variations of porosity and gas permeability of gas diffusion layers (GDLs), which are easily deformed among the components of a highly compressed PEMFC stack. The volume change owing to compression was measured experimentally, and the variations in the porosity and gas permeability were estimated using correlations published in previous literature. The effect of polytetrafluoroethylene (PTFE) which is added to the GDLs to enhance water discharge was investigated on the variations of porosity and gas permeability. The gas permeability which strongly affects the mass transport through GDL, decreases sharply with increasing compression when the GDL has high PTFE loading. As a result, the mass transport through the pore network of GDL can be changed considerably according to the PTFE loading even with the same clamping force. The accuracy of modeling of transport phenomena through GDL can be improved due to the enhanced correlations developed based on the results of this study.

Loading Effects on Thermal Conductivity of Soils: Particle-Scale Study (하중 조건이 지반의 열전도도에 미치는 영향: 입자 스케일에서의 연구)

  • Lee, Jung-Hwoon;Choo, Jin-Hyun;Yun, Tae-Sup;Lee, Jang-Guen;Kim, Young-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.9
    • /
    • pp.77-86
    • /
    • 2011
  • The stress condition mainly dominates the thermal conductivity of soils whereas governing factors such as unit weight and porosity suggested by empirical correlations are still valid. The 3D thermal network model enables evaluation of the stress-dependent thermal conductivity of particulate materials generated by discrete element method (DEM). The relationship among dominant factors is analyzed based on the coordination number and porosity determined by stress condition and thermal conductivity of pore fluid. Results show that the variation of thermal conductivity is strongly attributed to the enlargement of inter-particle contact area by loading history and pore fluid conductivity. This study highlights that the anisotropic evolution of thermal conductivity depends on the directional load and that the particle-scale mechanism mainly dictates the heat transfer in soils.

Improving Power Conversion Efficiency and Long-term Stability Using a Multifunctional Network Polymer Membrane Electrolyte; A Novel Quasi-solid State Dye-sensitized Solar Cell

  • Gang, Gyeong-Ho;Gwon, Yeong-Su;Song, In-Yeong;Park, Seong-Hae;Park, Tae-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.484.2-484.2
    • /
    • 2014
  • There are many efforts to improving the power conversion efficiencies (PCEs) of dye-sensitized solar cells (DSCs). Although DSCs have a low production cost, their low PCE and low thermal stability have limited commercial applications. This study describes the preparation of a novel multifunctional polymer gel electrolyte in which a cross-linking polymerization reaction is used to encapsulate $TiO_2$ nanoparticles toward improving the power conversion efficiency and long-term stability of a quasi-solid state DSC. A series of liquid junction dye-sensitized solar cells (DSCs) was fabricated based on polymer membrane encapsulated dye-sensitized $TiO_2$ nanoparticles, prepared using a surface-induced cross-linking polymerization reaction, to investigate the dependence of the solar cell performance on the encapsulating membrane layer thickness. The ion conductivity decreased as the membrane thickness increased; however, the long term-stability of the devices improved with increasing membrane thickness. Nanoparticles encapsulated in a thick membrane (ca. 37 nm), obtained using a 90 min polymerization time, exhibited excellent pore filling among $TiO_2$ particles. This nanoparticle layer was used to fabricate a thin-layered, quasi-solid state DSC. The thick membrane prevented short-circuit paths from forming between the counter and the $TiO_2$ electrode, thereby reducing the minimum necessary electrode separation distance. The quasi-solid state DSC yielded a high power conversion efficiency (7.6/8.1%) and excellent stability during heating at $65^{\circ}C$ over 30 days. These performance characteristics were superior to those obtained from a conventional DSC (7.5/3.5%) prepared using a $TiO_2$ active layer with the same thickness. The reduced electrode separation distance shortened the charge transport pathways, which compensated for the reduced ion conductivity in the polymer gel electrolyte. Excellent pore filling on the $TiO_2$ particles minimized the exposure of the dye to the liquid and reduced dye detachment.

  • PDF

The Model and Experiment for Heat Transfer Characteristics of Nanoporous Silica Aerogel

  • Mingliang, Zheng
    • Korean Journal of Materials Research
    • /
    • v.30 no.4
    • /
    • pp.155-159
    • /
    • 2020
  • Nanoporous silica aerogel insulation material is both lightweight and efficient; it has important value in the fields of aerospace, petrochemicals, electric metallurgy, shipbuilding, precision instruments, and so on. A theoretical calculation model and experimental measurement of equivalent thermal conductivity for nanoporous silica aerogel insulation material are introduced in this paper. The heat transfer characteristics and thermal insulation principle of aerogel nano are analyzed. The methods of SiO2 aerogel production are compared. The pressure range of SiO2 aerogel is 1Pa-atmospheric pressure; the temperature range is room temperature-900K. The pore diameter range of particle SiO2 aerogel is about 5 to 100 nm, and the average pore diameter range of about 20 ~ 40 nm. These results show that experimental measurements are in good agreement with theoretical calculation values. For nanoporous silica aerogel insulation material, the heat transfer calculation method suitable for nanotechnology can precisely calculate the equivalent thermal conductivity of aerogel nano insulation materials. The network structure is the reason why the thermal conductivity of the aerogel is very low. Heat transfer of materials is mainly realized by convection, radiation, and heat transfer. Therefore, the thermal conductivity of the heat transfer path in aerogel can be reduced by nanotechnology.

Fabrication and Properties of Bioactive Porous Ceramics for Bone Substitution (뼈 대체용 생체활성 다공질 세라믹스의 제조 및 특성)

  • Lee, Lak-Hyoung;Ha, Jung-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.10
    • /
    • pp.584-588
    • /
    • 2008
  • Porous hydroxyapatite(HA) and HA-coated porous $Al_2O_3$ possessing pore characteristics required for bone substitutes were prepared by a slurry foaming method combined with gelcasting. The HA coating was deposited by heating porous $Al_2O_3$ substrates in an aqueous solution containing $Ca^{2+}$ and ${PO_4}^{3-}$ ions at $65{\sim}95^{\circ}C$ under ambient pressure. The pore characteristic, microstructure, and compressive strength were investigated and compared for the two kinds of samples. The porosity of the samples was about 81% and 80% for HA and $Al_2O_3$, respectively with a highly interconnected network of spherical pores with size ranging from 50 to $250{\mu}m$. The porous $Al_2O_3$ sample showed much higher compressive strength(25 MPa) than the porous HA sample(10 MPa). Fairly dense and uniform HA coating(about $2{\mu}m$ thick) was deposited on the porous $Al_2O_3$ sample. Since the compressive strength of cancellous bone is $2{\sim}12$ MPa, both the porous HA and HA-coated porous $Al_2O_3$ samples could be successfully utilized as scaffolds for bone repair. Especially the latter is expected suitable for load bearing bone substitutes due to its excellent strength.

Fabrication and characterization of 3-D porous scaffold by polycaprolactone (폴리카프로락톤을 이용한 3차원 다공성 지지체 제조 및 특성 분석)

  • Kim, Jin-Tae;Bang, Jung Wan;Hyun, Chang-Yong;Choi, Hyo Jeong;Kim, Tae-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.58-65
    • /
    • 2016
  • This study was a preparatory experiment aimed the development of membrane scaffolds for tissue engineering. A PCL composite solution contained sodium chloride(NaCl). PCL porous membrane scaffolds were formed on a glass casting plate using a film applicator and immersed in distilled water to remove the NaCl reaching after drying. NaCl was used as a pore former for a 3 dimensional pore net-work. The dry condition parameters were $4^{\circ}C$, room temperature (RT) and $40^{\circ}C$ for each different temperatures in the drying experiment. SEM revealed the morphology of the pores in the membrane after drying and evaluated the in vitro cytotoxicity for basic bio-compatibility. The macro and micro pores existed together in the scaffold and showed a 3-dimensional pore net-working morphology at RT. The in vitro cytotoxicity test result was "grade 2" in accordance with the criterion for cytotoxicity by ISO 10993-5. The dry condition affected the formation of a 3 dimensional pore network and micro and macro pores. Therefore, these results are expected provide the basic process for the development of porous membrane scaffolds to control degradation and allow drug delivery.

Characteristics of Cellulose Aerogel Prepared by Using Aqueous Sodium Hydroxide-urea (Sodium Hydroxide-urea 수용액을 이용하여 제조한 셀룰로오스계 에어로겔의 특성)

  • Kim, Eun-Ji;Kwon, Gu-Joong;Kim, Dae-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.4
    • /
    • pp.302-309
    • /
    • 2013
  • The highly porous cellulosic aerogels were prepared by freeze-drying method using sodium hydroxide-urea aqueous solution in the process of dissolution, gelation, regeneration and organic solvent substitution. The structural characteristics of porous aerogel were analyzed using scanning electron microscopy and nitrogen adsorption apparatus. As a result, the dissolving pulp was completely dissolved, but filter papers and holocellulose were divided into two layers (dissolved and undissolved parts) in the process of centrifugation. The structure of aerogel from dissolved pulp showed porous pores in the surface and net-shaped network in the inner part. Aerogels from filter paper and holocellulose had the condensed porous network surface and the open-pore nano-fibril network inner structure. Undissolved form of fibers was observed in the aqueous solution of aerogel from holocellulose. The BET value ($S_{BET}$) of aerogel from dissolved pulp was ranged in 260~326 $m^2/g$, and it was decreased with the increase of concentration. Whereas, the $S_{BET}$ value of aerogel from filter paper (198~418 $m^2/g$) was increased with the increase of concentration. The $S_{BET}$ value of aerogel from holocellulose were 137 $m^2/g$ at 2% (w/w) of cellulose, and it was increased to maximum 401 $m^2/g$ at 4% (w/w) of cellulose. Then, it was decreased at 5% (w/w) of cellulose.

Preparation of Electrode Using Ni-PTFE Composite Plating for Alkaline Fuel Cell (Ni-PTFE 복합도금기술을 이용한 알칼리형 연료전지용 전극 제조)

  • Kim, Jae-Ho;Lee, Young-Seak
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.5
    • /
    • pp.361-370
    • /
    • 2009
  • Ni-PTFE composite plated on graphite (C/Ni-PTFE) and PTFE (PTFE/Ni-PTFE) particles were prepared uniformly by electroless composite plating. The conductivity of C/Ni-PTFE particles was 280 S/m higher than 95 S/m of PTFE/Ni-PTFE particles at same composite plating condition (Ni:35~36 wt%, PTFE:8 wt%). The C/Ni-PTFE particles were formed into the C/Ni-PTFE plate using heat treatment at $350^{\circ}C$ under 10~$1000\;kg/cm^2$. The C/Ni-PTFE plate showed 1) high conductivity of $5.7\;{\times}\;10^4\;S/m$ due to the existence of graphite as conducting aid and the formation of 3-dimensional Ni network 2) good gas diffusion caused by various pore volumes (0.01~$100\;{\mu}m$) in the plate. The plate could be useful for an electrode in an alkaline fuel cell (AFC). The current density of C/Ni-PTFE electrode indicated $84\;mA/cm^2$ at 0.3V and it was 3.0 times higher than that of PTFE/Ni-PTFE electrode.

Preparation of Composite Membranes of Dense PAA-Poly(BMA-co-MMA) IPN Supported on Porous and Crosslinked Poly(BMA-co-MMA) Sublayer and Their Pervaporation Characteristics

  • Kim, Sung-Chul;Lim, Byung-Yun
    • Macromolecular Research
    • /
    • v.11 no.3
    • /
    • pp.163-171
    • /
    • 2003
  • For the pervaporation of water-ethanol mixtures, new composite membranes having poly(acrylic acid)-poly (butyl methacrylate-co-methyl methacrylate) interpenetrati ng polymer network [PAA-P(BMA-co-MMA) IPN] skin layer supported on porous and crosslinked poly(BMA-co-MMA) were prepared. The morphology of the sub-layer of the composite membrane prepared in the presence of 60 wt% solvent showed cellular structure, on the other hand that of sublayer prepared in the presence of 70 wt% solvent presented very porous interconnected pore structure with macrovoids. Permeation rates of the composite membranes were largely influenced by the morphology of the sublayer. Separation factors increased with the increase of the degree of crosslinking of the PAA network. It was found that permeation rates could be increased by introducing anionic charges on carboxyl groups of the PAA. The permeation rate changes of the PAA-P(BMA-co-MMA) IPN composite membranes according to the feed compositions showed quite similar pattern with the swelling behavior in water-ethanol mixtures.