DOI QR코드

DOI QR Code

Variation of Porosity and Gas Permeability of Gas Diffusion Layers Under Compression

가스확산층의 압축에 따른 공극률 및 기체투과율의 변화

  • Received : 2013.01.21
  • Accepted : 2013.03.18
  • Published : 2013.08.01

Abstract

This study suggested the variations of porosity and gas permeability of gas diffusion layers (GDLs), which are easily deformed among the components of a highly compressed PEMFC stack. The volume change owing to compression was measured experimentally, and the variations in the porosity and gas permeability were estimated using correlations published in previous literature. The effect of polytetrafluoroethylene (PTFE) which is added to the GDLs to enhance water discharge was investigated on the variations of porosity and gas permeability. The gas permeability which strongly affects the mass transport through GDL, decreases sharply with increasing compression when the GDL has high PTFE loading. As a result, the mass transport through the pore network of GDL can be changed considerably according to the PTFE loading even with the same clamping force. The accuracy of modeling of transport phenomena through GDL can be improved due to the enhanced correlations developed based on the results of this study.

본 연구는 높은 압력으로 체결되어 있는 고분자전해질연료전지(PEMFC) 스택의 구성부품중 가장 크게 변형되는 가스확산층(GDL)의 공극률과 기체투과율의 변화를 제시하였다. 압축하중에 따른 체적변화를 실험을 통하여 측정하고 기존에 제시된 관계식을 이용하여 공극률과 기체투과율의 변화을 예측하였다. 또한 물의 배출을 향상시키기 위하여 첨가되는 PTFE 가 압축상태의 GDL 의 공극률과 기체투과율에 미치는 영향을 연구하였다. 물질전달에 직접 영향을 미치는 기체투과율은 PTFE 가 많이 포함된 GDL에서 급격하게 감소하였다. 결과적으로 같은 압축하중으로 체결하는 경우 GDL 의 PTFE 함량에 따라서 공극네트워크를 통한 물질전달은 크게 달라질 수 있다. 본 결과를 이용하면 GDL 에서의 전달현상에 대한 개선된 상관식을 개발할 수 있고 그로 인하여 모델링의 정확성을 향상시킬 수 있다.

Keywords

References

  1. Wilde, P. M., Mandle, M., Murate, M. and Berg, N., 2004, "Structural and Physical Properties of GDL and GDL/BPP Combinations and their Influence on PEMFC Performance," Fuel Cells, Vol. 4, pp. 180-184. https://doi.org/10.1002/fuce.200400022
  2. Escribano, S., Blachot, J., Etheve, J., Morin, A. and Mosdale, R., 2006, "Characterization of PEMFCs Gas Diffusion Layers Properties," Journal of Power Sources, Vol. 156, pp. 8-13. https://doi.org/10.1016/j.jpowsour.2005.08.013
  3. Antolini, E., Pozio, A., Giorgi, L. and Passalacqua, E., 1998, "Morphological Characteristics of Carbon/ Polytetrafluoroethylene Films deposited on Porous Carbon Support," Journal of Material Science, Vol. 33, pp. 1837-1843. https://doi.org/10.1023/A:1004349103997
  4. Kong, C. S., Kim, D. Y., Lee, H. K., Shul, Y. G. and Lee, T. H., 2002, "Influence of Pore-size Distribution of Diffusion Layer on Mass-transport Problems of Proton Exchange Membrane Fuel Cells," Journal of Power Sources, Vol. 108, pp. 185-191. https://doi.org/10.1016/S0378-7753(02)00028-9
  5. Lee, H. K., Park, J. H., Kim, D. Y. and Lee, T. H., 2004, "A Study on the Characteristics of the Diffusion Layer Thickness and Porosity of the PEMFC," Journal of Power Sources, Vol. 131, pp. 200-206. https://doi.org/10.1016/j.jpowsour.2003.12.039
  6. Lee, Y., Kim, B., Kim, Y. and Li, X., 2011, "Degradation of Gas Diffusion Layers through Repetitive Freezing," Applied Energy, Vol. 88, pp. 5111-5119. https://doi.org/10.1016/j.apenergy.2011.07.011
  7. Park, G. G., Sohn, Y. J., Yang, T. H., Yoon, Y. G., Lee, W. Y. and Kim, C. S., 2004, "Effect of PTFE Contents in the Gas Diffusion Media on the Performance of PEMFC," Journal of Power Sources, Vol. 131, pp. 182-187. https://doi.org/10.1016/j.jpowsour.2003.12.037
  8. Lim, C. and Wang, C. Y., 2004, "Effects of Hydrophobic Polymer Content in GDL on Power Performance of a PEM Fuel Cell," Electrochimica Acta, Vol. 49, pp. 4149-4156. https://doi.org/10.1016/j.electacta.2004.04.009
  9. Velayutham, G., Kaushik, J., Rajalakshmi, N. and Dhathathreyan, K. S., 2007, "Effect of PTFE Content in Gas Diffusion Media and Microlayer on the Performance of PEMFC tested under Ambient Pressure," Fuel Cells, Vol. 7, pp. 314-318. https://doi.org/10.1002/fuce.200600032
  10. Krishnamurthy, B. and Deepalochani, S., 2009, "Effect of PTFE Content on the Performance of a Direct Methanol Fuel Cell," International Journal of Hydrogen Energy, Vol. 34, pp. 446-452. https://doi.org/10.1016/j.ijhydene.2008.09.093
  11. Kang, S. J. and Kim Y. B., 2012, "Numerical Modeling of Current Density and Water Behavior at a designated Cross Section of the Gas Diffusion Layer in a Proton Exchange Membrane Fuel Cell," Trans. Korean Soc. Mech. Eng. B, Vol 36, pp. 161-170. https://doi.org/10.3795/KSME-B.2012.36.2.161
  12. Jeong H. S., Kim, J. I., Lee S. H., Ahn, B. K. and Kim, C. J., 2012, "Analysis of Mass Transport in PEMFC GDL," Trans. Korean Soc. Mech. Eng. B, Vol 36, pp. 979-988. https://doi.org/10.3795/KSME-B.2012.36.10.979
  13. Shi, Z., Wang, X. and Guessous, L., 2010, "Effect of Compression on the Water Management of a Proton Exchange Membrane Fuel Cell with Different Gas Diffusion Layers," Journal of Fuel Cell Science and Technology, Vol. 7, pp. 021012-1-021012-7. https://doi.org/10.1115/1.3177451
  14. Wang, Y. and Chen, K. S., 2011, "Effect of Spatially-Varying GDL Properties and Land Compression on Water Distribution in PEM Fuel Cells," Journal of The Electrochemical Society, Vol. 158, pp. B1292-B1299. https://doi.org/10.1149/2.015111jes
  15. Chang, W. R., Hwang, J. J., Weng, F. B. and Chan S. H., 2007,"Effect of Clamping Pressure on the Performance of a PEM Fuel Cell," Journal of Power Sources, Vol. 166, pp. 149-154. https://doi.org/10.1016/j.jpowsour.2007.01.015

Cited by

  1. Measurement of In-plane Gas Permeability of Gas Diffusion Layers in Proton Exchange Membrane Fuel Cells under Compressive Strain vol.28, pp.9, 2016, https://doi.org/10.6110/KJACR.2016.28.9.367