Browse > Article
http://dx.doi.org/10.7843/kgs.2011.27.9.077

Loading Effects on Thermal Conductivity of Soils: Particle-Scale Study  

Lee, Jung-Hwoon (Dept. of Civil and Environmental Engineering, Yonsei Univ.)
Choo, Jin-Hyun (Korea Institute of Construction Technology)
Yun, Tae-Sup (Dept. of Civil and Environmental Engineering, Yonsei Univ.)
Lee, Jang-Guen (Korea Institute of Construction Technology)
Kim, Young-Seok (Korea Institute of Construction Technology)
Publication Information
Journal of the Korean Geotechnical Society / v.27, no.9, 2011 , pp. 77-86 More about this Journal
Abstract
The stress condition mainly dominates the thermal conductivity of soils whereas governing factors such as unit weight and porosity suggested by empirical correlations are still valid. The 3D thermal network model enables evaluation of the stress-dependent thermal conductivity of particulate materials generated by discrete element method (DEM). The relationship among dominant factors is analyzed based on the coordination number and porosity determined by stress condition and thermal conductivity of pore fluid. Results show that the variation of thermal conductivity is strongly attributed to the enlargement of inter-particle contact area by loading history and pore fluid conductivity. This study highlights that the anisotropic evolution of thermal conductivity depends on the directional load and that the particle-scale mechanism mainly dictates the heat transfer in soils.
Keywords
Discrete element method; Thermal conductivity; Thermal network model;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yun, T. S., Dumas, B., and Santamarina, J. C., (2011), "Heat transport in granular materials during cyclic fluid flow", Granular matter, 13(1), pp.29-37.   DOI   ScienceOn
2 Zhao, X. and Evans, T. M., (2009), "Discrete simulations of laboratory loading conditions", International Journal of Geomechanics, 9(4), pp.169-178.   DOI   ScienceOn
3 Proctor, D. C. and Barton, R. R., (1974), "Measurements of the angle of interparticle friction", Geotechnique, 24(4), pp.581-604.   DOI   ScienceOn
4 Rothenburg, L. and Kruyt, N. P., (2004), "Critical state and evolution of coordination number in simulated granular materials", International Journal of Solids and Structures, 41(21), pp.5763-5774.   DOI   ScienceOn
5 Santamarina, J. C., (2001), Soils and waves. New York: J. Wiley & Sons. xix, 488 p. : ill. ; 25 cm.
6 Singh, D. N. and Devid, K., (2000), "Generalized relationships for estimating soil thermal resistivity", Experimental Thermal and Fluid Science, 22(3-4), pp.133-143.   DOI   ScienceOn
7 Sundberg, J., (2009), "Estimation of thermal conductivity and its spatial variability in igneous rocks from in situ density logging", International Journal of Rock Mechanics and Mining Sciences, 46(6), pp.1023-1028.   DOI   ScienceOn
8 Tarnawski, V. R., et al., (2002), "Inter-particle contact heat transfer in soil systems at moderate temperatures", International Journal of Energy Research, 26(15), pp.1345-1358.   DOI   ScienceOn
9 Thornton, C., (2000), "Numerical simulations of deviatoric shear deformation of granular media", Geotechnique, 50(1), pp.43-53.   DOI   ScienceOn
10 Vargas, W. L. and McCarthy, J. J., (2002), "Stress effects on the conductivity of particulate beds", Chemical Engineering Science, 57(15), pp.3119-3131.   DOI   ScienceOn
11 Yagi, S. and Kunii, D., (1957), "Studies on effective thermal conductivities in packed beds", AIChE Journal, 3(3), pp.373-381.   DOI
12 Yimsiri, S. and Soga, K., (2000), "Micromechanics-based stressstrain behaviour of soils at small strains", Geotechnique, 50(5), pp.559-571.   DOI   ScienceOn
13 Fillion, M.-H., Cote, J., and Konrad, J.-M., (2011), "Thermal radiation and conduction properties of materials ranging from sand to rock-fill", Canadian Geotechnical Journal, 48(4), pp.532-542.   DOI   ScienceOn
14 Yimsiri, S. and Soga, K., (2010), "DEM analysis of soil fabric effects on behaviour of sand", Geotechnique, 60(6), pp.483-495.   DOI   ScienceOn
15 Yun, T. S. and Santamarina, J. C., (2008), "Fundamental study of thermal conduction in dry soils", Granular matter, 10(3), pp.197-207.   DOI   ScienceOn
16 Yun, T. S. and Evans, T. M., (2010), "Three-dimensional random network model for thermal conductivity in particulate materials", Computers and Geotechnics, 37(7-8), pp.991-998.   DOI   ScienceOn
17 Holtzman, R., Silin, D. B., and Patzek, T. W., (2010), "Frictional granular mechanics: A variational approach", International Journal for Numerical Methods in Engineering, 81(10), pp.1259-1280.
18 Incropera, F. P. and Dewitt, D. P., (1996), Fundamentals of heat and mass transfer: John Wiley & Sons.
19 Itasca, (2003), PFC3D (Particle Flow Code in three dimensions) Version 3.0. Minneapolis, MN.
20 Jang, E.-R., Jung, Y.-H., and Chung, C.-K., (2010), "Stress ratio-fabric relationships of granular soils under axi-symmetric stress and plane-strain loading", Computers and Geotechnics, 37(7-8), pp.913-929.   DOI   ScienceOn
21 Johansen, O., (1975), Thermal conductivity of soils. University of Trondheim, Trondheim, Norway.
22 Johnston, I., Narsilio, G., and Colls, S., (2011), "Emerging geothermal energy technologies", KSCE Journal of Civil Engineering, 15(4), pp.643-653.   DOI   ScienceOn
23 Mindlin, R. D. and Deresiewicz, H., (1953), "Elastic spheres in contact under varying oblique forces", Journal of Applied Mechanics, ASME, 20(3), pp.327-344.
24 Ng, T.T., (2006), "Input parameters of discrete element methods", Journal of Engineering Mechanics, 132(7), pp.723-729.   DOI   ScienceOn
25 Pestana, J. M., Whittle, A. J., and Salvati, L. A., (2002), "Evaluation of a constitutive model for clays and sands: Part I - sand behaviour", International Journal for Numerical and Analytical Methods in Geomechanics, 26(11), pp.1097-1121.   DOI   ScienceOn
26 O'Sullivan, C. and Bray, J. D., (2004), "Selecting a suitable time step for discrete element simulations that use the central difference time integration scheme", Engineering Computations, 21(2-4), pp.278-303.   DOI   ScienceOn
27 O'Sullivan, C., (2011), Particulate Discrete Element Modelling - A Geomechanics Perspective. Applied Geotechnics: Spoon Press.
28 Oda, M., Nemat-Nasser, S., and Konishi, J., (1985), "Stressinduced anisotropy in granular masses", Soils and Foundations, 25(3), pp.85-97.   DOI
29 Andersland, O. B. and Ladanyi, B., (2004), Frozen Ground Engineering. 2nd ed: John Wiley & Sons, Inc.
30 Barchelor, G. K. and O'Brien, R. W., (1977), "Thermal or Electrical Conduction Through a Granular Material", Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, pp.313-333.
31 Becker, B. R., Misra, A., and Fricke, B. A., (1992), "Development of correlations for soil thermal conductivity", International Communications in Heat and Mass Transfer, 19(1), pp.59-68.   DOI   ScienceOn
32 Cote, J., Fillion, M.-H., and Konrad, J.-M., (2011), "Estimating Hydraulic and Thermal Conductivities of Crushed Granite Using Porosity and Equivalent Particle Size", Journal of Geotechnical and Geoenvironmental Engineering.
33 Chen, S., (2008), "Thermal conductivity of sands", Heat and Mass Transfer, 44(10), pp.1241-1246.   DOI   ScienceOn
34 Coop, M. R. and Lee, I. K., (1993), "The behaviour of granular soils at elevated stresses", Predictive soil mechanics, Proceedings of the C.P.Wroth Memorial Symposium: Thomas Telford, pp.186-198.
35 Cortes, D. D., et al., (2009), "Thermal conductivity of hydratebearing sediments", Journal of Geophysical Research, 114 (B11).
36 Cundall, P. A. and Strack, O. D. L., (1979), "A discrete numerical model for granular assemblies", Geotechnique, 29(1), pp.47-65.   DOI   ScienceOn
37 Esch, D. C., (2004), Thermal Analysis, Construction and Monitoring Methods for Frozen Ground. Vol.492. Resteon, VA: American Society of Civil Engineers.