DOI QR코드

DOI QR Code

Characteristics of Cellulose Aerogel Prepared by Using Aqueous Sodium Hydroxide-urea

Sodium Hydroxide-urea 수용액을 이용하여 제조한 셀룰로오스계 에어로겔의 특성

  • Kim, Eun-Ji (College of Life Science & Biotechnology, Dongguk University) ;
  • Kwon, Gu-Joong (College of Life Science & Biotechnology, Dongguk University) ;
  • Kim, Dae-Young (College of Life Science & Biotechnology, Dongguk University)
  • 김은지 (동국대학교 바이오시스템 대학) ;
  • 권구중 (동국대학교 바이오시스템 대학) ;
  • 김대영 (동국대학교 바이오시스템 대학)
  • Received : 2013.03.08
  • Accepted : 2013.07.24
  • Published : 2013.07.25

Abstract

The highly porous cellulosic aerogels were prepared by freeze-drying method using sodium hydroxide-urea aqueous solution in the process of dissolution, gelation, regeneration and organic solvent substitution. The structural characteristics of porous aerogel were analyzed using scanning electron microscopy and nitrogen adsorption apparatus. As a result, the dissolving pulp was completely dissolved, but filter papers and holocellulose were divided into two layers (dissolved and undissolved parts) in the process of centrifugation. The structure of aerogel from dissolved pulp showed porous pores in the surface and net-shaped network in the inner part. Aerogels from filter paper and holocellulose had the condensed porous network surface and the open-pore nano-fibril network inner structure. Undissolved form of fibers was observed in the aqueous solution of aerogel from holocellulose. The BET value ($S_{BET}$) of aerogel from dissolved pulp was ranged in 260~326 $m^2/g$, and it was decreased with the increase of concentration. Whereas, the $S_{BET}$ value of aerogel from filter paper (198~418 $m^2/g$) was increased with the increase of concentration. The $S_{BET}$ value of aerogel from holocellulose were 137 $m^2/g$ at 2% (w/w) of cellulose, and it was increased to maximum 401 $m^2/g$ at 4% (w/w) of cellulose. Then, it was decreased at 5% (w/w) of cellulose.

Sodium hydroxide-urea 수용액을 이용한 다공성 셀룰로오스계 에어로겔은 용해, 겔화, 재생, 유기용매 치환과 동결건조과정에 의해 제조되었다. 에어로겔의 구조적 특성과 다공성은 주사전자현미경과 질소흡착장치를 이용하여 분석하였다. 그 결과, 용해펄프는 완전히 용해되었지만, 여과지와 홀로셀룰로오스는 원심분리과정에서 수용액에 용해된 부분과 용해되지 않은 부분으로 구분되었다. 용해펄프 에어로겔의 표면은 다공성 공극, 내부는 그물모양의 망목상 구조가 관찰되었다. 여과지와 홀로셀룰로오스 에어로겔은 표면이 압축된 다공성 네트워크 형태였고, 내부는 open-pore 구조의 나노피브릴 네트워크로 구성되었다. 홀로셀룰로오스 에어로겔에서 수용액에 용해되지 않는 형태의 섬유들이 관찰되었다. 용해펄프로부터 만들어진 에어로겔의 비표면적은 260~326 $m^2/g$ 범위였고, 농도 증가와 함께 감소하였다. 그러나 여과지 에어로겔의 비표면적(198~418 $m^2/g$)은 농도 증가와 함께 증가하였다. 홀로셀룰로오스 에어로겔은 2% 농도에서는 137 $m^2/g$로 농도의 증가와 함께 증가하여 4% 농도에서 401 $m^2/g$로 최댓값을 보여주었고, 5% 농도에서 감소하였다.

Keywords

References

  1. Aaltonen O. and O. Jauhiainen. 2009. The preparation of lignocellulosic aerogels from ionic liquid solutions. Carbohydrate polymers 75: 125-129 https://doi.org/10.1016/j.carbpol.2008.07.008
  2. Brunauer, S., P. H. Emmett, and E. Teller. 1938. Adsorption of gases in Multi molecular layers J. Am. Chem. Soc. 60: 309-319. https://doi.org/10.1021/ja01269a023
  3. Cai, J. and L. Zhang. 2006. Unique gelation behavior of cellulose in NaOH/urea aqueous solution. Biomacromolecules, 7(1): 183-189. https://doi.org/10.1021/bm0505585
  4. Cai, J., S. Kimura, M. Wada, S. Kuga, and L. Zhang. 2008. Cellulose aerogels from aqueous alkali hydroxide- urea solution. Chemsuschem 1: 149-154. https://doi.org/10.1002/cssc.200700039
  5. Fisher, F., A. Rigacci, R. Pirard, S. Berthon-Fabry, and P. Achard. 2006. Cellulose-base aerogels. Polymer 47: 7636-7645. https://doi.org/10.1016/j.polymer.2006.09.004
  6. Hüsing, N. and U. Schubert. 1998. Aerogels-airy materials; chemistry, structure, and properties. Angew Chem. Int. Ed. 37: 22-45. https://doi.org/10.1002/(SICI)1521-3773(19980202)37:1/2<22::AID-ANIE22>3.0.CO;2-I
  7. Innerlohinger, J., H. K. Webber, and G. Kraft. 2006. Aerocellulose: Aerogels and Aerogel-like Materials made from cellulose. Macromol Symp. 244: 126-135. https://doi.org/10.1002/masy.200651212
  8. Jin, H., Y. Nishiyama, M. Wada, and S. Kuga. 2004. Nanofibrillar cellulose aerogels, Colloids surf A: Physicochem Eng. Aspects 240: 63-67. https://doi.org/10.1016/j.colsurfa.2004.03.007
  9. Kistler, S. S. 1931. Coherent expanded aerogels and jellies. Nature. 127: 741.
  10. Kistler, S. S. 1932. Coherent expanded-Aerogels. J. Phys. Chem. 36: 52-64.
  11. Pekala, R. W., C. T. Alviso, F. M. Kong, and S. S. Hulsey. 1992. Aerogels derived from multifunctional organic monomers. J. Non-cryst Solids 145: 90-98. https://doi.org/10.1016/S0022-3093(05)80436-3
  12. Porro, F., O. Bédué, H. Chanzy, and L. Heux L. 2007. Solid-State 13C NMR Study of Na-Cellulose Complexes. Biomacromolecules, 8(8): 2586-2593. https://doi.org/10.1021/bm0702657
  13. Roy, C., T. Budtova, P. Navard, and O. Bedue. 2001. Structure of cellulose-soda solutions at low temperatures. Biomacromolecules, 2(3): 687-693. https://doi.org/10.1021/bm010002r
  14. Tan, C., M. Fung, J. K. Newman, and C. Vu. 2001. Organic aerogels with very high impact strength. Adv. Mater. 13: 644-646. https://doi.org/10.1002/1521-4095(200105)13:9<644::AID-ADMA644>3.0.CO;2-#
  15. Turbak, A. F., R. B. Hammer, R. E. Davies, and N. A. Portnoy. 1977. A critical review of cellulose solvent systems, A.C.S. Series, Editor. Washington DC.
  16. 권구중, 김대영, 김남훈. 2010. 홀로셀룰로오스 에어로 겔의 특성. 목재공학 38(3): 205-212.