• Title/Summary/Keyword: polymer-LED

Search Result 216, Processing Time 0.021 seconds

Synthesis and characterization of silanized-SiO2/povidone nanocomposite as a gate insulator: The influence of Si semiconductor film type on the interface traps by deconvolution of Si2s

  • Hashemi, Adeleh;Bahari, Ali
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1546-1552
    • /
    • 2018
  • The polymer nanocomposite as a gate dielectric film was prepared via sol-gel method. The formation of crosslinked structure among nanofillers and polymer matrix was proved by Fourier transform infrared spectroscopy (FT-IR). Differential thermal analysis (DTA) results showed significant increase in the thermal stability of the nanocomposite with respect to that of pure polymer. The nanocomposite films deposited on the p- and n-type Si substrates formed very smooth surface with rms roughness of 0.045 and 0.058 nm respectively. Deconvoluted $Si_{2s}$ spectra revealed the domination of the Si-OH hydrogen bonds and Si-O-Si covalence bonds in the structure of the nanocomposite film deposited on the p- and n-type Si semiconductor layers respectively. The fabricated n-channel field-effect-transistor (FET) showed the low threshold voltage and leakage currents because of the stronger connection between the nanocomposite and n-type Si substrate. Whereas, dominated hydroxyl groups in the nanocomposite dielectric film deposited on the p-type Si substrate increased trap states in the interface, led to the drop of FET operation.

Wave propagation in FG polymer composite nanoplates embedded in variable elastic medium

  • Ahmed Kadiri;Mohamed Bendaida;Amina Attia;Mohammed Balubaid;S. R. Mahmoud;Abdelmoumen Anis Bousahla;Abdeldjebbar Tounsi;Fouad Bourada;Abdelouahed Tounsi
    • Advances in nano research
    • /
    • v.17 no.3
    • /
    • pp.235-248
    • /
    • 2024
  • This study explores the transmission of waves through polymer composite nanoplates situated on varying elastic foundations. The reinforcement of these nanoplates is assured by graphene nanoplatelets (GNP). Furthermore, the material's behavior is assessed using the Halpin-Tsai model, while the precise representations of stress and strain effects are ensured by the four variables higher order shear deformation theory. The equations of motion are obtained and resolved through the application of Hamilton's principle and the trial function. The study examines how different factors, like the nonlocal parameter, strain gradient parameter, weight fraction, and variable elastic foundations affect the outcomes of wave propagation in nanoplates. This thorough investigation offers valuable insights into the difficult behavior of wave dynamics in nanoplates, this has led to substantial advancements in engineering applications for the future.

Adhesion Characteristics of Polymer Material Treated by Atmospheric Pressure Plasma (상압 플라즈마 표면처리에 의한 고분자 재질의 접착특성 변화)

  • Seo, Seung-Ho;Chang, Sung-Hwan;Yoo, Yeoung-Een;Chung, Jae-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.445-450
    • /
    • 2011
  • We studied the adhesion characteristics of polymer films (PC, PET, EVA) treated by atmospheric pressure plasma. The process parameters were the frequency, gas flow, and treatment time; we studied the effects of these parameters on the adhesion characteristics of the polymer materials. We used de-ionized water and diiodomethane as the polar and nonpolar solvents, respectively, for measuring the contact angles, and subsequently calculated the surface free energy of each polymer film. The adhesion characteristics were studied by carrying out a $180^{\circ}$ peel-off test. The polymer films treated with plasma developed a hydrophilic surface, which led to increased surface free energy and improved adhesion properties. From the results for contact angle, surface free energy, and adhesion strength, we obtained the optimal plasma-treatment conditions.

Enhanced Hydrophilicity of Polyethersulfone Membrane by Various Surface Modification Methods (다양한 표면개질을 이용한 폴리에테르설폰 막의 친수성 향상)

  • Park, So Jung;Hwang, Jun Seok;Choi, Won-Kil;Lee, Hyung Keun;Huh, Kang Moo
    • Polymer(Korea)
    • /
    • v.38 no.2
    • /
    • pp.205-212
    • /
    • 2014
  • Polyethersulfone (PES) membranes were modified by various physico-chemical modification methods to enhance the surface hydrophilicity for application as a separation membrane to separate and collect water vapor from the flue gas. Homogeneous PES flat-sheet membranes were prepared and modified by acid treatment, blending and plasma treatment for hydrophilic surface modification. The surface characteristics of the modified PES membranes were evaluated by ATR-FTIR, XPS, SEM and contact angle measurements. No significant change in hydrophilicity was observed for the PES membranes modified by acid treatment with sulfuric acid or blending with various compositions of poloxamer as an amphiphilic PEO-PPO-PEO tri-block copolymer. On the other hand, Ar plasma treatment led to a significant increase in the hydrophilicity of the surface, depending on the plasma treatment time. As a result, the PES membrane could be the most efficiently surface-treated by applying the plasma treatment for enhancing their surface hydrophilicity.

The Crosslinking Characteristic of Poly(vinyl alcohol) by Natural Dye (천연 염료에 의한 폴리(비닐 알코올)의 가교 특성)

  • Kim, Gwan-Hoon;Kim, Hyo-Gap;Kang, Ho-Jong
    • Polymer(Korea)
    • /
    • v.35 no.1
    • /
    • pp.72-76
    • /
    • 2011
  • The physical properties of crosslinked poly(vinyl alcohol)(PVA) by natural dyes as crosslinking agents were investigated and a comparison was made with chemically crosslinked PVA by Polycup 172. It was found that natural anthocyanin and crocin made possible to crosslink PVA physically through the hydrogen bonding of OH in both PVA and natural dyes in the present with NaCl as a catalyst. The water swellability dramatically decreased and the physical crosslinking led to decreasing of crystallinity of PVA. The lowering of thermal stability was noticed in the physically crosslinked PVA compared to chemically crosslinked PVA due to its lower crosslink density. However even natural dyes have polysaccharides in their chain, their thermal stability was higher than uncrosslinked PVA.

Morphology Control of Active Layers for Efficient Organic Indoor Photovoltaics (광활성층 모폴로지 제어를 통한 실내광 유기태양전지의 효율 향상 연구)

  • Yongchan Jang;Soyoung Kim;Jeonga Kim;Jongbok Kim;Wonho Lee
    • Journal of Adhesion and Interface
    • /
    • v.23 no.4
    • /
    • pp.130-136
    • /
    • 2022
  • Recently, organic semiconductor based indoor photovoltaics have gained attention since they exhibit excellent photovoltaic performance than that of conventional Si-based photovoltaics. In this study, we synthesize the medium bandgap polymer of PTBT and optimize PTBT:PC71BM blend films by introducing solvent additives. To this end, we select DIO and CN solvent additives and vary their contents from 0 to 3 vol%. As a result, we produce the highest power conversion efficiency of 11.31% under LED 1000 lx conditions with DIO (1.5 vol%) + CN (0.5 vol%)

High power efficient solar cell using the organic polymer materials (유기고분자 재료를 이용한 우수한 효율의 태양전지)

  • Lee, Junghoon;Park, Jukwang;Chang Seoul
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.356-357
    • /
    • 2003
  • Organic materials are suitable for use in photoelectric conversion devices. Thus, Organic semiconductors are promising materials for photovoltaic devices and other optoelectronic applications such as light emitting diodes(LED). The organic solar cell seems to be the usefulness in comparison with the inorganic solar cell in terms of workability, ease of processing, low cost, flexibility and area expansion. (omitted)

  • PDF

Composition-Dependent Properties of Natural Rubber Blended with Butadiene Rubber (배합비에 의한 고무 블렌드의 물성변화)

  • Kwon, Kih-Wan;Park, Moon-Soo
    • Elastomers and Composites
    • /
    • v.31 no.5
    • /
    • pp.347-352
    • /
    • 1996
  • A natural rubber was blended with a butadiene rubber with different ratios. A natural rubber, along with three different blends, its ratio varying from 10 to 15 to 20 weight %, were prepared and tested. It was found that inclusion of the butadiene rubber increased cure time, compared to the natural rubber. It is speculated that increased free volume due to the inclusion of butadiene rubber contributed to this effect. Furthermore, inclusion of butadiene rubber led to increase hardness of a sphere, and as a result, the extent of rebound increased sharply.

  • PDF

High Temperature Lubrication with Phosphate Esters

  • Hanyaloglu, Bengi
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.177-183
    • /
    • 1995
  • Recent work with phosphate esters has shown that a lubricious polymeric film can formed from the vapor phase on interacting during and sliding. This lubrication technique has led to methods to reduce friction and wear to very low values at high temperatures up to 700$^{\circ}$C. Preliminary with synthetic tri aryl phosphates are very promising. The vaporized lubricant forms a polymeric film on the sliding and rolling surfaces reducing the coefficient of friction below 0.05. In-situ formation of the polymeric films shows that the polymer that is formed on the surface exists in different states depending on surface temperature.

GaAs 본딩장비용 Resin Coater의 동적 안전성 평가

  • 김옥구;송준엽;강재훈;지원호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.202-202
    • /
    • 2004
  • 화합물 반도체는 초고속, 초고주파 디바이스에 적합한 재료인 갈큠비소(GaAs), 인듐-인산듐(InP) 등 2 개 이상의 원소로 구성되어 있고, 실리콘에 비해 결정내의 빠른 전자이동속도와 발광성, 고속동작, 고주파특성, 내열특성을 지니고 있어 발광 소자 (LED)와 이동통신(RE)소자의 개발 등에 다양하게 이용되고 있다. 이와 같이 화합물 반도체는 고부가가치의 첨단산업 부품들로 적용되는 만큼 생산제조 공정에 해당하는 연마, 본딩, 디본딩에 관한 방법과 기술에 대한 연구가 꾸준히 진행되고 있다.(중략)

  • PDF