• Title/Summary/Keyword: polymer scaffolds

Search Result 139, Processing Time 0.026 seconds

Biodegradable Polymer-Nanoceramic Composite for Bone Regeneration

  • Kim, Sang-Soo;Park, Min-Sun;Kim, Byung-Soo
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.179-179
    • /
    • 2006
  • PLGA/HA composite scaffold fabricated by GF/PL method showed enhanced mechanical property, hydrophilicity and osteoconductivity compared with the SC/PL scaffolds, and this enhancement was most likely due to a higher extent of exposure of HA particles to the scaffold surface. The biodegradable polymer/bioceramic composite scaffolds fabricated by the GF/PL method could enhance bone regeneration efficacy for the treatment of bone defects compared with conventional composite scaffolds.

  • PDF

Preparation and Characterization of Small Intestine Submucosa Powder Impregnated Poly(L-lactide) Scaffolds: The Application for Tissue Engineered Bone and Cartilage

  • Khang, Gilson;Rhee, John M.;Shin, Philkyung;Kim, In Young;Lee, Bong;Lee, Sang Jin;Lee, Young Moo;Lee, Hai Bang;Lee, Ilwoo
    • Macromolecular Research
    • /
    • v.10 no.3
    • /
    • pp.158-167
    • /
    • 2002
  • In order to endow with new bioactive functionality from small intestine submucosa (SIS) powder as natural source to poly (L-lactide) (PLA) and poly (lactide-co-glycolide) (PLGA) synthetic biodegradable polymer, porous SIS/PLA and SIS/PLGA as natural/synthetic composite scaffolds were prepared by means of the solvent casting/salt leaching methods for the possibility of the application of tissue engineered bone and cartilage. A uniform distribution of good interconnected pores from the surface to core region was observed the pore size of 40~500 ${\mu}{\textrm}{m}$ independent with SIS amount using the solvent casting/salt leaching method. Porosities, specific pore areas as well as pore size distribution also were almost same. After the fabrication of SIS/PLA hybrid scaffolds, the wetting properties was greatly enhanced resulting in more uniform cell seeding and distribution. Five groups as PGA non-woven mesh without glutaraldehyde (GA) treatment, PLA scaffold without or with GA treatment, and SIS/PLA (Code No.3 ; 1 : 12 of salt content, (0.4 : 1 of SIS content, and 144 ${\mu}{\textrm}{m}$ of median pore size) without or with GA treatment were implanted into the back of nude mouse to observe the effect of SIS on the induction of cells proliferation by hematoxylin and eosin, and von Kossa staining for 8 weeks. It was observed that the effect of SIS/PLA scaffolds with GA treatment on bone induction are stronger than PLA scaffolds, that is to say, in the order of PLA/SIS scaffolds with GA treatment > PLA/SIS scaffolds without GA treatment > PGA nonwoven > PLA scaffolds only with GA treatment = PLA scaffolds only without GA treatment for the osteoinduction activity. The possible explanations are (1) many kinds of secreted, circulating, and extracellular matrix-bound growth factors from SIS to significantly affect critical processes of tissue development and differentiation, (2) the exposure of SIS to GA resulted in significantly calcification, and (3) peri-implant fibrosis due to covalent bonding between collagen molecule by crosslinking reaction. In conclusion, it seems that SIS plays an important role for bone induction in SIS/PLA scaffolds for the application of tissue engineering area.

Collagen Scaffolds in Cartilage Tissue Engineering and Relevant Approaches for Future Development

  • Irawan, Vincent;Sung, Tzu-Cheng;Higuchi, Akon;Ikoma, Toshiyuki
    • Tissue Engineering and Regenerative Medicine
    • /
    • v.15 no.6
    • /
    • pp.673-697
    • /
    • 2018
  • BACKGROUND: Cartilage tissue engineering (CTE) aims to obtain a structure mimicking native cartilage tissue through the combination of relevant cells, three-dimensional scaffolds, and extraneous signals. Implantation of 'matured' constructs is thus expected to provide solution for treating large injury of articular cartilage. Type I collagen is widely used as scaffolds for CTE products undergoing clinical trial, owing to its ubiquitous biocompatibility and vast clinical approval. However, the long-term performance of pure type I collagen scaffolds would suffer from its limited chondrogenic capacity and inferior mechanical properties. This paper aims to provide insights necessary for advancing type I collagen scaffolds in the CTE applications. METHODS: Initially, the interactions of type I/II collagen with CTE-relevant cells [i.e., articular chondrocytes (ACs) and mesenchymal stem cells (MSCs)] are discussed. Next, the physical features and chemical composition of the scaffolds crucial to support chondrogenic activities of AC and MSC are highlighted. Attempts to optimize the collagen scaffolds by blending with natural/synthetic polymers are described. Hybrid strategy in which collagen and structural polymers are combined in non-blending manner is detailed. RESULTS: Type I collagen is sufficient to support cellular activities of ACs and MSCs; however it shows limited chondrogenic performance than type II collagen. Nonetheless, type I collagen is the clinically feasible option since type II collagen shows arthritogenic potency. Physical features of scaffolds such as internal structure, pore size, stiffness, etc. are shown to be crucial in influencing the differentiation fate and secreting extracellular matrixes from ACs and MSCs. Collagen can be blended with native or synthetic polymer to improve the mechanical and bioactivities of final composites. However, the versatility of blending strategy is limited due to denaturation of type I collagen at harsh processing condition. Hybrid strategy is successful in maximizing bioactivity of collagen scaffolds and mechanical robustness of structural polymer. CONCLUSION: Considering the previous improvements of physical and compositional properties of collagen scaffolds and recent manufacturing developments of structural polymer, it is concluded that hybrid strategy is a promising approach to advance further collagen-based scaffolds in CTE.

Implantation of Fetal Hepatocytes on Biodegradable Polymer Scaffolds (생분해성 고분자 담체를 이용한 태아 간세포의 이식)

  • 곽소정;최동호;백승삼;김상수;최차용;김병수
    • KSBB Journal
    • /
    • v.19 no.3
    • /
    • pp.210-214
    • /
    • 2004
  • Whole liver transplantation, the currently available treatment of end-stage liver disease, has limitations including serious donor shortage, fatal surgical complications, risk of allograft rejection, and the requirement of life-long immunosuppression. In this study, we investigated the possibility of reconstructing liver tissues in vivo by implanting fetal hepatocytes on polymer scaffolds as a potential method to replace the current treatments. Fetal hepatocytes were freshly isolated from mice and seeded onto porous mesh scaffolds fabricated from polyglycolic acid, a biodegradable synthetic polymer. The seeded scaffolds were implanted into peritoneal cavity of athymic mice for one week. As a control, fetal hepatocytes were implanted without scaffold. One week after transplantation, liver-like tissues formed. Histological and immunohistochemical analyses indicated that the hepatocyles and liver tissue structures (bile ducts) were present in the newly formed tissues. In the control group, no transplanted hepatocytes were observed. Theses preliminary results suggest that liver tissues may be regeneration by transplanting fetal hepatocytes on polymer scaffolds.

Synthesis of Hyaluronic Acid Scaffold for Tissue Engineering and Evaluation of Its Drug Release Behaviors (히아루론산을 이용한 조직공학용 Scaffold의 제조와 약물 방출 거동에 관한 연구)

  • Nam, Hye-Sung;Kim, Ji-Heng;An, Jeong-Ho;Chung, Dong-June
    • Polymer(Korea)
    • /
    • v.25 no.4
    • /
    • pp.476-485
    • /
    • 2001
  • In this study, we tried to design and synthesize using natural polymers (hyaluronic acid and sodium alginate) and also to make some kinds of scaffolds as sponge type for reducing the burst effect of loaded drug from them. Photo-dimerizable group was incorporated to hyaluronic acid and degradable hydrogel was prepared by the UV radiation of the polymer. The pore size and its distribution of scaffold were controlled by changing microsphere production conditions such as solution concentration and spraying pressure. It was found that drug release behavior from synthesized scaffolds was affected by hybridization of two naturally originated polymers (cinnamoylated tetrabutylammonium hyaluronate: CHT and cinnamolylated sodium alginate: CSA) and the obtained scaffolds were degraded in fairly long time (about 2 months) under in vitro environment. Therefore, we expect that obtained scaffolds can be applicable for the tissue regeneration scaffolds in the fields of orthopaedic surgery.

  • PDF

Effects of PLGA/Fibrin Scaffolds on Attachment and Proliferation of Costal Cartilage Cells (PLGA/피브린 지지체가 늑연골 세포의 부착과 성장에 미치는 영향)

  • Song, Jeong Eun;Lee, Yujung;Lee, Yun Me;Cho, Sun Ah;Jang, Ji Eun;Lee, Dongwon;Khang, Gilson
    • Polymer(Korea)
    • /
    • v.37 no.2
    • /
    • pp.141-147
    • /
    • 2013
  • Poly(lactide-co-glycolic acid) (PLGA) has been widely used in the drug delivery and tissue engineering applications because of its good mechanical strength and biodegradation profile. However, cell attachment to the scaffold is low compared with that on fibrin although cells can be attached to the polymer surface. In this study, PLGA scaffolds were soaked in cells-fibrin suspension and polymerized with dropping fibrinogen-thrombin solution. Cellular proliferation activity was observed in PLGA/fibrin-seeded costal cartilage cells (CC) on 1, 3, and 7 days using the MTT assay and SEM. The effects of fibrin on the extracellular matrix (ECM) formation were evaluated using CC cell-seeded PLGA/fibrin scaffolds. The PLGA/fibrin scaffolds elicited more production of glycosaminoglycan (GAG) and collagen than the PLGA scaffold. In this study, fibrin incorporated PLGA scaffolds were prepared to evaluate the effects of fibrin on the cell attachment and proliferation in vitro and in vivo. In this result, we confirmed that proliferation of cells in PLGA/fibrin scaffolds were better than in PLGA scaffolds. The PLGA/fibrin scaffolds provide suitable environment for growth and proliferation of costal cartilage cells.

Polymer brush: a promising grafting approach to scaffolds for tissue engineering

  • Kim, Woonjung;Jung, Jongjin
    • BMB Reports
    • /
    • v.49 no.12
    • /
    • pp.655-661
    • /
    • 2016
  • Polymer brush is a soft material unit tethered covalently on the surface of scaffolds. It can induce functional and structural modification of a substrate's properties. Such surface coating approach has attracted special attentions in the fields of stem cell biology, tissue engineering, and regenerative medicine due to facile fabrication, usability of various polymers, extracellular matrix (ECM)-like structural features, and in vivo stability. Here, we summarized polymer brush-based grafting approaches comparing self-assembled monolayer (SAM)-based coating method, in addition to physico-chemical characterization techniques for surfaces such as wettability, stiffness/elasticity, roughness, and chemical composition that can affect cell adhesion, differentiation, and proliferation. We also reviewed recent advancements in cell biological applications of polymer brushes by focusing on stem cell differentiation and 3D supports/implants for tissue formation. Understanding cell behaviors on polymer brushes in the scale of nanometer length can contribute to systematic understandings of cellular responses at the interface of polymers and scaffolds and their simultaneous effects on cell behaviors for promising platform designs.

Enhanced Bone-Regenerative Performance of Porous Hybrid Scaffolds by Surface Immobilization of Nano-Hydroxyapatite

  • Lee, Sang-Cheon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.12.1-12.1
    • /
    • 2009
  • Nano-hydroxyapatite (N-HAp)has shown the pivotal role in producing bone-regenerative materials since it has similarity to natural bone minerals in terms of size, morphology, and the composition. Currently, the combination of biopolymers and N-HAp is recognizedas an attractive approach in generating hybrid scaffolds for bone tissueengineering. Surface engineering is an important issue since it determines whether cells can effectively adhere and proliferate on porous scaffolds. We aim to develop a synthetic approach to porous 3D scaffolds by immobilizing N-HAp on pore surfaces. The discrete nano-level anchoring of N-HAp on the scaffold pore surface is achieved using surface-repellent stable colloidal N-HAp with surface phosphate functionality. This rational surface engineering enables surface-anchored N-HAp to express its overall intrinsic bioactivity,since N-HAp is not phase-mixed with the polymers. The porous polymer scaffolds with surface-immobilized N-HAp provide more favorable environments thanconventional bulk phase-mixed polymer/N-HAp scaffolds in terms of cellular interaction and growth. In vitro biological evaluation using alkalinephosphatase activity assay supports that immobilized N-HAp on pore surfaces of polymer scaffolds contributed to the more enhanced in vitro osteogenicpotential. Besides, the scaffolds with surface-exposed N-HAp provide favorable environments for enhanced in vivo bone tissue growth, estimated by characteristic biomarkers of bone formation such as collagen. The results suggest that newly developed hybrid scaffolds with surface-immobilized N-HApmay serve as a useful 3D substrate with pore surfaces featuring excellent bonetissue-regenerative properties. Acknowledgement. This research was supported by a grant (code #: 2009K000430) from 'Center for Nanostructured Materials Technology' under '21st Century Frontier R&D Programs' of the Ministry of Education, Science and Technology, Korea.

  • PDF

Preparation of Poly(L-lactic acid) Scaffolds by Melt Extrusion Foaming (용융 압출 발포에 의한 폴리락틱산 지지체 가공)

  • Lee Jong Rok;Kang Ho-Jong
    • Polymer(Korea)
    • /
    • v.29 no.2
    • /
    • pp.198-203
    • /
    • 2005
  • Melt extrusion foaming process for the preparation of poly(L-lactic acid) (PLLA) scaffolds was carried out and the effects of foaming conditions on the pore structure of PLLA scaffolds and their mechanical properties were investigated. The porosity and mechanical properties of fabricated scaffolds were compared with the scaffolds obtained from the salt leaching method as well. It was found that the optimum pore structure was achieved when the PLLA melt was kept in extruder for the maximum decomposition time of blowing agent. In order to maintain the proper scaffolds structure, the blowing agent content should be less than $10\;wt\%$. It can be concluded that melt extrusion foaming process allows for the production of scaffold having higher mechanical properties with reasonable pore size and open cell structure for hard tissue regeneration even though it has less porosity than scaffolds made by salt leaching process.

Fabrication of Nanofiber-Combined 3D Scaffolds using Dual-Head Deposition Technology (듀얼헤드 적층 기술을 이용한 나노섬유로 결합된 3D 인공지지체 제작)

  • Sa, Min-Woo;Lee, Chang-Hee;Kim, Jong Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.108-115
    • /
    • 2018
  • In bone tissue engineering, polycaprolactone (PCL) is one of the most widely used biomaterials to manufacture scaffolds as a synthetic polymer with biodegradability and biocompatibility. The polymer deposition system (PDS) with four axis heads, which can dispense bio-polymers, has been used in scaffold fabrication for tissue engineering applications. A dual-head deposition technology of PDS is an effective technique to fabricate 3D scaffolds. The electrospinning technology has been widely used to fabricate porous and highly interconnected polymer fibers. Thus, PDS can fabricate nanofiber-combined hybrid scaffolds using fused deposition modeling (FDM) and electrospinning methods. This study aims to fabricate nanofiber-combined scaffolds with uniform nanofibers using PDS. The PCL nanofibers were fabricated and evaluated according to the fabrication process parameters. PCL nanofibers were successfully fabricated when the applied voltage, tip-to-collector distance, flow rate, and solution concentration were 5 kV, 1 cm, 0.1 ml/h, and 8 wt%, respectively. The cell proliferation was evaluated according to the electrospinning time. Scanning electron microscopy was used to acquire images of the cross-sectioned hybrid scaffolds. The cell proliferation test of the PCL and nanofiber-combined hybrid scaffolds was performed using a CCK-8 assay according to the electrospinning time. The result of in-vitro cell proliferation using osteosarcoma MG-63 cells shows that the hybrid scaffold has good potential for bone regeneration.