Browse > Article

Preparation of Poly(L-lactic acid) Scaffolds by Melt Extrusion Foaming  

Lee Jong Rok (Center for Advanced Functional Polymers, Dept. of Polymer Sci. and Eng., Dankook University)
Kang Ho-Jong (Center for Advanced Functional Polymers, Dept. of Polymer Sci. and Eng., Dankook University)
Publication Information
Polymer(Korea) / v.29, no.2, 2005 , pp. 198-203 More about this Journal
Abstract
Melt extrusion foaming process for the preparation of poly(L-lactic acid) (PLLA) scaffolds was carried out and the effects of foaming conditions on the pore structure of PLLA scaffolds and their mechanical properties were investigated. The porosity and mechanical properties of fabricated scaffolds were compared with the scaffolds obtained from the salt leaching method as well. It was found that the optimum pore structure was achieved when the PLLA melt was kept in extruder for the maximum decomposition time of blowing agent. In order to maintain the proper scaffolds structure, the blowing agent content should be less than $10\;wt\%$. It can be concluded that melt extrusion foaming process allows for the production of scaffold having higher mechanical properties with reasonable pore size and open cell structure for hard tissue regeneration even though it has less porosity than scaffolds made by salt leaching process.
Keywords
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 A. G. Mikos, A. J. Thorsen, L. A. Czerwonka, Y. Bae, R. Langer, D. N. Winslow, and J. P. Vacanti, Polymer, 35, 1068 (1994)   DOI   ScienceOn
2 Y. S. Nam and T. G. Park, Biomaterials, 20, 1783 (1999)
3 L. D. Harris, B. S. Kim, and D. J. Mooney, J. Biomed. Mater. Res., 42, 396 (1998)
4 C. M. Agrawal, G. G. Niederauer, and K. A. Athanasiou, Tissu Eng., 1, 24 (1995)
5 M. E. Gomes, J. S. Godinho, D. Tchalamov, A. M. Cunha, and R. L. Reis, Mater. Sci. Eng., C20, 19 (2002)
6 M. E. Gomes, A. S. Ribeiro, P. B. Malafaya, R. L. Reis, and A. M. Cunha, Biomaterials, 22, 883 (2001)   DOI   PUBMED   ScienceOn
7 A. G. Mikos, A. J. Sarakinos, S. M. Leite, J. P. Vacanti, and R. Langer, Biomaterials, 14, 323 (1993)
8 D. W. Hutmacher, Biotechnology, 12, 689 (1994)   DOI   ScienceOn
9 A. J. Salgado, M. E. Gomes, A. Chou, O. P. Coutinho, R. L. Reis, and D. W. Hutmacher, Mater. Sci. Eng., C20, 27 (2002)
10 J. F. Mano, C. M. Vaz, S. C. Mendes, R. L. Reis, and A. M. Cunha, J. Mater. Sci. Mater. Med., 10, 857 (1999)
11 K. Whang, C. H. Tomas, K. E. Healy, and G. Nuber, Polymer, 36, 837 (1995)
12 S. Gogolewski and A. J. Pennings, Colloid Polym. Sci., 261, 477 (1983)
13 A. Park, B. Wu, and L. G. Griffith, J. Biomater. Sci. Polym. Ed., 9, 89 (1998)
14 T. Hayashi, Prog. Polym. Sci., 19, 663 (1994)
15 R. C. Thomson, M. J. Yaszemski, J. M. Powers, and A. G. Mikos, J. Biomater. Sci. Polym. Ed., 7, 23 (1995)
16 K. P. Andriano, Y. Tabata, Y. Ikada, and Y. Heller, J. Biomed. Mater. Res., 48, 602 (1999)
17 K. P. Andriano, T. Pohojonen, and P. Tormala, J. Appl. Biomater., 5, 133 (1994)
18 Y. Bae, L. G. Cima, D. Ingber, J. P. Vacanti, and R. Langer, J. Biomed. Mater. Res., 27, 183 (1993)
19 D. L. Wise, Biopolymeric Controlled System, Vol. 1, CRS Press, Boca Raton, Ch. 8, 1985
20 R. Langer and J. P. Vacanti, Science, 260, 920 (1993)
21 L. G. Cima, J. P. Vacanti, D. Ingber, D. Mooney, and R. Langer, J. Biomech. Eng., 113, 143 (1991)
22 L. E. Freed, J. C. Marquis, A. Nohria, J. Emmanual, A. Mikos, and R. Langer, J. Biomed. Mater. Res., 11, 27 (1993)