Browse > Article

Preparation and Characterization of Small Intestine Submucosa Powder Impregnated Poly(L-lactide) Scaffolds: The Application for Tissue Engineered Bone and Cartilage  

Khang, Gilson (Department of Polymer Science and Technology, Chonbuk National University)
Rhee, John M. (Department of Polymer Science and Technology, Chonbuk National University)
Shin, Philkyung (Department of Polymer Engineering, Bukyung National University)
Kim, In Young (Department of Polymer Engineering, Bukyung National University)
Lee, Bong (Department of Polymer Engineering, Bukyung National University)
Lee, Sang Jin (Department of Industrial Chemistry, Hanyang University)
Lee, Young Moo (Department of Industrial Chemistry, Hanyang University)
Lee, Hai Bang (Biomaterials Laboratory, Korea Research Institute of Chemical Technology)
Lee, Ilwoo (Dept. of Neurosurgery, catholic University Medical College)
Publication Information
Macromolecular Research / v.10, no.3, 2002 , pp. 158-167 More about this Journal
Abstract
In order to endow with new bioactive functionality from small intestine submucosa (SIS) powder as natural source to poly (L-lactide) (PLA) and poly (lactide-co-glycolide) (PLGA) synthetic biodegradable polymer, porous SIS/PLA and SIS/PLGA as natural/synthetic composite scaffolds were prepared by means of the solvent casting/salt leaching methods for the possibility of the application of tissue engineered bone and cartilage. A uniform distribution of good interconnected pores from the surface to core region was observed the pore size of 40~500 ${\mu}{\textrm}{m}$ independent with SIS amount using the solvent casting/salt leaching method. Porosities, specific pore areas as well as pore size distribution also were almost same. After the fabrication of SIS/PLA hybrid scaffolds, the wetting properties was greatly enhanced resulting in more uniform cell seeding and distribution. Five groups as PGA non-woven mesh without glutaraldehyde (GA) treatment, PLA scaffold without or with GA treatment, and SIS/PLA (Code No.3 ; 1 : 12 of salt content, (0.4 : 1 of SIS content, and 144 ${\mu}{\textrm}{m}$ of median pore size) without or with GA treatment were implanted into the back of nude mouse to observe the effect of SIS on the induction of cells proliferation by hematoxylin and eosin, and von Kossa staining for 8 weeks. It was observed that the effect of SIS/PLA scaffolds with GA treatment on bone induction are stronger than PLA scaffolds, that is to say, in the order of PLA/SIS scaffolds with GA treatment > PLA/SIS scaffolds without GA treatment > PGA nonwoven > PLA scaffolds only with GA treatment = PLA scaffolds only without GA treatment for the osteoinduction activity. The possible explanations are (1) many kinds of secreted, circulating, and extracellular matrix-bound growth factors from SIS to significantly affect critical processes of tissue development and differentiation, (2) the exposure of SIS to GA resulted in significantly calcification, and (3) peri-implant fibrosis due to covalent bonding between collagen molecule by crosslinking reaction. In conclusion, it seems that SIS plays an important role for bone induction in SIS/PLA scaffolds for the application of tissue engineering area.
Keywords
SIS; PLA; tissue engineering; bone; scaffolds;
Citations & Related Records

Times Cited By Web Of Science : 32  (Related Records In Web of Science)
Times Cited By SCOPUS : 30
연도 인용수 순위
1 /
[ B. P. Kropp;J. K. Ludlow;D. Spicer;M. K. Rippy;S. F. Badylak;M. C. Adams;M. A. Keating;R. C. Rink;R. Birhle;K. B. Thor ] / Urology   DOI
2 /
[ G. Khang;H. B. Lee;J. B. Park ] / Bio-Med. Mater. Eng.
3 /
[ G. Khang;M. K. Choi;J. M. Rhee;S. J> Lee;H. B. Lee;Y. Iwasaki;N. Nakabayashi;K. Ishihara ] / Korea Polym. J.
4 /
[ A. G. Mikos;Y. Bao;L. G. Cima;D. E. Inber;J. P. Vacanti;R. Langer ] / J. Biomed. Mater. Res.   DOI
5 /
[ C. M. Agrawal'P. E. Gabriele;G. Niederauer;K. A. Athanasiou ] / Tissue Engineering   DOI
6 /
[ D. F. Williams;E. Mort ] / J. Bioeng.
7 /
[ J. O. Hollinger;J. P. Schmitz ] / J. Oral Maxillofac. Surg.   DOI   ScienceOn
8 /
[ G. Khang;J. H. Jeon;J. W. Lee;S. C. Cho;H. B. Lee ] / Bio-Med. Mater. Eng.
9 /
[ A. Sugitani;J. C. Reynolds;M. Tsunboi;S. Todo ] / Surgery   DOI   ScienceOn
10 /
[ A. G. Mikos;A. J. Thorsen;L. A. Czerwonka;Y. Bao;R. Langer;D. N. Winslow;J. P. Vacanti ] / Polymer   DOI   ScienceOn
11 /
[ D. A. Grande;C. Halberstadt;G. Naughton;R. Schwartz;R. Manji ] / J. Biomed. Mater. Res.   DOI   ScienceOn
12 /
[ K. M. Clark;G. C. Lantz;S. K. Salibury;S. F. Badylak;M. C. Hiles;S. L. Voytik ] / J. Surg. Res.   DOI   ScienceOn
13 /
[ T. J. Owen;G. C. Lantz;M. C. Hiles;J. V. Vleet;B. R. Martin;L. A. Geddes ] / J. Surg. Res   DOI   ScienceOn
14 /
[ O. Bostman ] / J. Bone Joint Surg.
15 /
[ G. Khang;J. C. Cho;J. W. Lee;J. M. Rhee;H. B. Lee ] / Bio-Med. Mater. Eng.
16 /
[ S. Gogolewski;A. J. Pennings ] / Makromol. Chem. Rapid Commum.   DOI
17 /
[ J. C. Cho;G. Khang;J. M. Rhee;Y. S. Kim;J. S. Lee;H. B. Lee ] / Korea Polym. J.
18 /
[ A. Carrio;G. Schwach;J. Coudane;M. Vert ] / J. Control. Release
19 /
[ G. Kang;C. S. Park;J. M. Rhee;S. J. Lee;Y. M. Lee;I. Lee;M. G. Choi;H. B. Lee ] / Korea Polym. J.
20 Mathods of Tissue Engineering /
[ G. Khang;H. B. Lee;A. Atala(ed.);R. Lanza(ed.) ] / Mathods of Tissue Engineering
21 /
[ L. G. Cima;D. E. Ingber;J. P. Vacanti;R. Langer ] / Biotech. Bioeng.   DOI
22 /
[ M. C. Hiles;S. F. Badylak;G. C. Lantz;K. Kokini;L. A. Geddes;R. J. Morff ] / J. Biomed. Mater. Res.   DOI   ScienceOn
23 /
[ G. Khang;B. J. Jeong;H. B. Lee;J. B. Park ] / Bio-Med. Mater. Eng.
24 /
[ J. H. Aubert;S. Hulbert ] / Polymer   DOI   ScienceOn
25 /
[ G. Khang;S. J. Lee;J. H. Jeon;J. H. Lee;Y. M. Lee;H. B. Lee ] / Polymer(Korea)
26 /
[ L. E. Frees;J. C. Marquis;A. Nohira;J. Emmanual;A. G. Mikos;R. Langer ] / J. Biomed. Mater. Res.   DOI
27 /
[ S. L. Voytic-Harvin;A> O. Brightman;M. R. Krine;B. Waisner;S. F. Badylak ] / J. Cell. Biochem.   DOI   ScienceOn
28 /
[ G. Khang;J. M. Rhee;I. Lee;H. B. Lee ] / Polym. Sci. Tech.
29 /
[ C. Schmidt;R. Wenz;B. Nies;F. Moll ] / J. Control. Release
30 /
[ G. Khang;H. B. Lee;J. B. Park ] / Bio-Med. Mater. Eng.
31 /
[ M. C. Bobotin-Jonson;P. E. Swanson;D. C. Johnson;R. B. Schuessler;J. L. Cox ] / J. Thor. Cardiovasc. Surg.   DOI   ScienceOn
32 /
[ G. G. Giodano;R. C. Thomson;S. L. Ishaug;A> G. Mikos;S. Cumber;C. A. Garcia;D. Lahiri-Munir ] / J. Biomed. Mater. Res.   DOI   ScienceOn
33 /
[ H. L. Ritter;L. C. Drake ] / Ind. Eng. Chem.   DOI
34 /
[ H. T. Wang;H. Palmer;R. J. Linhardt;D. R. Flanagan;E. Schmitt ] / Biomaterials   DOI   ScienceOn
35 /
[ A. G. Mikos;G. Sarakinos;S. M. Leite;J. P. Vacanti;R. Langer ] / Biomaterials   DOI   ScienceOn
36 /
[ G. Khang;J. H. Lee;I. Lee;J. M. Rhee;H. B. Lee ] / Korea Polym. J.
37 /
[ B. P. Kropp ] / World J. Urol.   DOI   ScienceOn
38 /
[ G. Khang;J. H. Jeon;J. C. Cho;J. M. Rhee;H. B. Lee ] / Polymer(Korea)
39 /
[ M. S. Sack;D. C. Gloeckner ] / J. Biomed. Mater. Res.   DOI   ScienceOn
40 /
[ H. L. Wald;G. Sarakinos;M. D. Lyman;A. G. Mikos;J. P. Vacanti;R. Langer ] / Biomaterials   DOI   ScienceOn