• Title/Summary/Keyword: polymer nanocomposites

Search Result 376, Processing Time 0.024 seconds

Real-Time XRD Analysis of Polystyrene/Clay Nanocomposites by In-Situ Polymerization (In-situ 중합법에 의한 폴리스티렌/점토 나노복합재료의 실시간 X선 분석)

  • Kim, Jang-Yup;Hwang, Seok-Ho;Hong, Yoo-Seok;Huh, Wan-Soo;Lee, Sang-Won
    • Polymer(Korea)
    • /
    • v.29 no.1
    • /
    • pp.87-90
    • /
    • 2005
  • In this study, we have examined the exfoliation behavior of layered clay during in-situ polymeriztion with styrene by using real-time XRD analysis. The 4C1 beam line at the Pohang Accelerator Laboratory (PAL) was used for this study. Different exfoliation behaviors have been shown to depend on the cation exchange capacity (CEC) of clay and the chemical structure of organic modifiers. For 10A-MMT and 15A-MMT having high CEC, no peak shifts were observed on real-time XRD analysis during polymerization. However, 2$\theta$ for 25A-MMT and VDAC-MMT, each having low CEC’s as well as aromatic benzene moieties and vinyl groups, respectively, decreased as polymerization time increased.

Synthesis and Properties of Polyurethane/Clay Nanocomposites Containing Siloxane Segment (실록산 세그먼트를 가진 폴리우레탄/점토 나노복합체의 제조 및 물성에 관한 연구)

  • Lee Jung Eun;Kim Hyung Joong
    • Polymer(Korea)
    • /
    • v.29 no.2
    • /
    • pp.177-182
    • /
    • 2005
  • Montmorillonite (MMT) modified with siloxane diamine was reacted with a reactant obtained from 4,4'-diphenyl methane diisocyanate (MDI) and polyester type polyol, $Nippollan4010(\bar{M}_n2000)$. Finally, polyurethane (PU)/MMT composites were prepared by using 1,4-butane diol as a chain extender in $25\;wt\%$ solution of N,N-dimethyl acetamide (DMAc). It was expected that these nanocomposites had superior exfoliation property to that of MMT dispersed polyurethanes produced by simple mixing due to insertion of siloxane main chain to the silicate interlayer of MMT. Extent of reaction and formation of final products were analysed by using FT-IR spectroscopy. Dispersion into the PU and intercalation of MMT were identified by applying X-ray diffraction (XRD) and transmission electron microscopy (TEM). Tensile data were acquired by universal test machine (UTM). Thermal stability and variation of surface energy were characterized by thermal gravimetric analysis (TGA) method and measurement of contact angle on the synthesized composites, respectively. As the results the organo-MMT modified with siloxane diamine in the PU composites has an intercalated structure relatively well-expanded rather than a completely exfoliated structure. The tensile strengths and the moduli for the PU/organo-MMT composites were drastically enhanced in comparison to those of $PU/Na^+-MMT$ composites.

Effects of Oxyfluorinated Graphene Oxide Flake on Mechanical Properties of PMMA Artificial Marbles (함산소불소화 처리된 그래핀 산화물 플레이크가 PMMA 인조대리석의 기계적 물성에 미치는 영향)

  • Kim, Hyo-Chul;Jeon, Son-Yeo;Kim, Hyung-Il;Lee, Young-Seak;Hong, Min-Hyuk;Choi, Ki-Seop
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.251-261
    • /
    • 2012
  • The nanocomposites containing graphene oxide flakes were prepared in order to improve the mechanical properties of artificial marbles based on poly(methyl methacrylate)(PMMA) matrix. Graphene oxide flakes were prepared from graphite by oxidation with Hummers method followed by exfoliation with thermal treatment. Surface of graphene oxide flakes were modified with oxyfluorination in various oxygene:fluorine compositions to improve the interfacial compatibility. The nanocomposites containing graphenes modified with oxyfluorination in the oxygen content of 50% and higher showed the significant increase in flexural strength, flexural modulus, Rockwell hardness, Barcol hardness, and Izod impact strength. The morphology of fractured surface showed the improved interfacial adhesion between PMMA matrix and the graphenes which were properly treated with oxyfluorination. The mechanical properties of nanocomposite were deteriorated by increasing the content of graphene above 0.07 phr due to the nonuniform dispersion of graphenes.

Fabrication of the poly (methyl methacrylate)/clay (modified with fluorinated surfactant) nanocomposites using supercritical fluid process (초임계 공정을 이용한 poly(methyl methacrylate)/클레이 나노복합체 제조)

  • Kim, Yong-Ryeol;Jeong, Hyeon-Taek
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.231-237
    • /
    • 2014
  • The supercritical fluids (SCFs) have been widely used for material synthesis and processing due to their remarkable properties including low viscosity, high diffusivity and low surface tension. Carbon dioxide is one of the suitable solvents in SCFs processes in terms of its advantages such as easy processibility (with low critical temperature and pressure), inexpensive, nonflammable, nontoxic, and readily available. However, it has generally low solubility for high molecular weight polymers with the exception of fluoropolymers and siloxane polymers. Therefore, hydrocarbon solvents and hydrochlorofluorocarbons have been used for various SCFs process by its high solubility for high molecular weight polymers. In this report, a PMMA/clay nanocomposites were fabricated by using supercritical fluid process. The $Na^+$-MMT(montmorillonites)was modified by a fluorinated surfactant which is able to enhance compatibility with the chlorodifluoromethane(HCFC-22) and thus, improve dispersability of the clay in the polymer matrix. The PMMA/fluorinated surfactant modified clay nanocomposite shows enhanced mechanical and thermal properties which characterized by X-raydiffraction(XRD), Thermo gravimetric analysis(TGA), Dynamic mechanical analysis (DMA) and Transmission electron microscopy (TEM).

Functionalized Graphene/Polyimide Nanocomposites under Different Thermal Imidization Temperatures (열 이미드화 온도에 따른 작용기화 그래핀/폴리이미드 나노복합재료)

  • Ju, Jieun;Chang, Jin-Hae
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.88-98
    • /
    • 2015
  • 4-Amino-N-hexadecylbenzamide-graphene sheets (AHB-GSs), used in the preparation of the polyimide (PI) nanocomposite films, were synthesized by mixing a dispersion of graphite oxide with a solution of the ammonium salt of AHB. The atomic force microscope image of functionalized-GS on mica and a profile plot revealed the average thickness of AHB-GS to be ~3.21 nm. PI films were synthesized by reacting 4,4'-biphthalic anhydride and bis(4-aminophenyl) sulfide. PI nanocomposite films containing various contents of AHB-GS over the range of 0-10 wt% were synthesized using the solution intercalation method. The PI nanocomposite films under different thermal imidization temperatures, 250 and $350^{\circ}C$, were examined. The graphenes, for the most part, were well dispersed in the polymer matrix despite some agglomeration. However, micrometer-scale particles were not detected. The average thickness of the particles was <10 nm, as revealed from the transmission electron microscope images. Only a small amount of AHB-GS was required to improve the gas barrier, and electrical conductivity. In contrast, the glass transition and initial decomposition temperatures of the PI hybrid films continued to decrease with increasing content of AHB-GS up to 10 wt%. In general, the properties of the PI hybrid films heat treated at $350^{\circ}C$ were better than those of films heat treated at $250^{\circ}C$.

Poly(ethylene terephthalate) Nanocomposite Fibers with Thermally Stable Organoclays (내열성 유기화 점토를 이용한 폴리(에틸렌 테레프탈레이트) 나노복합체 섬유)

  • Jung, Min-Hye;Chang, Jin-Hae
    • Polymer(Korea)
    • /
    • v.31 no.6
    • /
    • pp.518-525
    • /
    • 2007
  • The thermomechanical properties and morphologies of nanocomposite fibers of poly(ethylene terephthalate)(PET) incorporating thermally stable organoclays are compared. Dodecyltriphenyl-phosphonium-mica($C_{12}PPh-Mica$) and 1-hexadecane benzimidazole-mica ($C_{16}BIMD-Mica$) were used as reinforcing fillers in the fabrication of PET hybrid fibers. Dispersions of organoclays with PET were studied by using the in-situ polymerization method at various organoclay contents to produce nano-scale composites. The thermo-mechanical properties and morphologies of the PET hybrid fibers were determined using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), wide angle X-ray diffraction (XRD), electron microscopy (SEM and TEM), and a universal tensile machine (UTM). Transmission electron microscopy (TEM) micrographs show that some of the clay layers are dispersed homogeneously within the polymer matrix on the nano-scale, although some clay particles are agglomerated. We also found that the addition of only a small amount of organoclay is enough to improve the thermal stabilities and mechanical properties of the PET nanocomposite fibers. Even polymers with low organoclay content (<5 wt%) were found to exhibit much higher thermo-mechanical values than pure PET fibers.

Preparation of Exfoliated PCL/Clay Nanocomposite and Its Characterization (박리형 PCL/Clay 나노복합재료 제조와 특성)

  • 유성구;박대연;배광수;서길수
    • Polymer(Korea)
    • /
    • v.25 no.3
    • /
    • pp.421-426
    • /
    • 2001
  • 11-Aminododecanoic acid, to insert the functional group of -COOH reacted with the end group of poly($\varepsilon$-caprolactone) diol, and cetyltrimethylammonium bromide (CTMA), to increase the d-spacing of Montmorillonite (MMT), were intercalated into $Na^+;_-$MMT. The modified MMT was reacted with poly(${varepsilon}-caprolactone$) diol ($M_n{=2000$) in THF solution at $80^{\circ}C$ for 4 hrs. After reaction, poly(${varepsilon}-caprolactone$) ($M_n{=80000$) was mixed into the solution for 12 hrs. To prepare the PCL/clay nanocomposite film this solution was cast into the silicon mold at $60^{\circ}C$ in vacuum oven for 6 hrs. From the results of XRD and TEM, it was found that the exfoliated PCL/clay nanocomposite were prepared. The effects of the amount of MMT on the mechanical properties and thermal properties of PCL/clay nanocomposites have been investigated by tensile tester and DSC. Because the MMT was dispersed homogeneously in PCL matrix, the Young's modulus of the nanocomposite were found to be excellent. However, MMT dispersed in PCL matrix had almost no effect on the tensile strength of the composites. The crystallization temperature of PCL increased in proportion to 3 wt% MMT in the PCL matrix.

  • PDF

Thermal and Mechanical Properties with Hydrolysis of PLLA/MMT Nanocomposite (PLLA/MMT 나노복합재료의 가수분해에 따른 열적, 기계적 물성)

  • Lee Jong Hun;Lee Yun Hui;Lee Doo Sung;Lee Youn-Kwan;Nam Jae-Do
    • Polymer(Korea)
    • /
    • v.29 no.4
    • /
    • pp.375-379
    • /
    • 2005
  • The morphology and therma]/viscoelastic characteristics were investigated for PLLA/MMT nanocomposite manufactured by incorporating inorganic nanosized silicate nanoplatelets into biodeuadable poly(l-lactic acid) (PLLA). The XRD difiactogram and TEM image may be regarded as a formation of homogeneously dispersed nanocomposites. The melting energy(${\Delta}H_m$) was increased during hydrolysis process because of increase of crystallinity. As MMT played a role of reinforcing agent, the storage modulus was increase in case of PLLA/MMT nanocomposite, it was well coincided with our previous results. From SEM image, many tiny pinholes formed by spinodal decomposition were observed on the surface, and the shape of nanocomposite was maintained during hydrolysis process. In this study, it was shown that the control of biodegradation rate, thermal/mechnical property was possibile by incorporating MMT.

Preparation of Kenyaite/epoxy Nanocomposite from Pulverization of Kenyaite (분쇄된 Kenyaite를 이용한 Kenyaite/epoxy 나노복합체 제조)

  • Joo, Eul-Rea;Jeong, Soon-Yong;Oh, Seong-Geun;Kwon, Oh-Yun
    • Applied Chemistry for Engineering
    • /
    • v.18 no.1
    • /
    • pp.48-53
    • /
    • 2007
  • Pulverization characteristics of H-kenyaite in vibration mill and exfoliation property in epoxy of pulverized H-kenyaite was investigated by using XRD, SEM, TEM. and particle size analyzer. Pulverization was conducted for 0.5~5 h. The particle morphology of sample pulverized for 1 h preserved plate-shape. However, this plate-shape disappeared in the sample pulverized for 3 h. The XRD pattern of sample pulverized for 1 h showed the characteristic peak of H-kenyaite. However, the peak disappeared in samples pulverized above 3 h, indicating severe destruction of H-kenyaite structure. TEM analysis for the kenyaite/epoxy nanocomposites exhibited only gallery expansion of 3~5 nm in non-pulverized sample, but dramatical large expansion of 5~10 nm in the samples pulverized during 1 h. This results confirm that the pulverization of wide plates composed of H-kenyaite particle have largely affect on the formation of an exfoliated kenyaite-polymer nanocomposite.

Study on the Charateristics of Nylon/Clay Nanocomposite Prepared by Monomer Casting Method (단량체 주형 기법에 의하여 제조한 나일론/클레이 나노복합체의 특성에 관한 연구)

  • Chung, Dae-won;Kim, Pil Young
    • Applied Chemistry for Engineering
    • /
    • v.16 no.4
    • /
    • pp.502-506
    • /
    • 2005
  • In the presence of various clays, nylon/clay nanocomposites were synthesized by anionic polymerization of ${\varepsilon}$-caprolactam (CL) via monomer casting method. The effect of each clay on polymerization reaction was investigated and the change in gallery structure of clays during polymerization was analyzed by X-ray diffraction. When the three kinds of organo-clays were used in the amount of 2 wt% of CL, polymerizations were not successful due to an increase in viscosity during polymerization. Significant changes were not observed in the mechanical and thermal properties of the composites containing organo-clays with 1 wt%. On the other hand, composites containing natural clay up to 5 wt% were successfully prepared, and the composite with 5 wt% showed a decrease in tensile strength and elongation, and remarkable improvement in thermal properties.