Browse > Article

Thermal and Mechanical Properties with Hydrolysis of PLLA/MMT Nanocomposite  

Lee Jong Hun (Department of Plymer Science and Engineering)
Lee Yun Hui (Department of Plymer Science and Engineering)
Lee Doo Sung (Department of Plymer Science and Engineering)
Lee Youn-Kwan (Department of Chemical Engineering, Sungkyunkwan University)
Nam Jae-Do (Department of Plymer Science and Engineering)
Publication Information
Polymer(Korea) / v.29, no.4, 2005 , pp. 375-379 More about this Journal
Abstract
The morphology and therma]/viscoelastic characteristics were investigated for PLLA/MMT nanocomposite manufactured by incorporating inorganic nanosized silicate nanoplatelets into biodeuadable poly(l-lactic acid) (PLLA). The XRD difiactogram and TEM image may be regarded as a formation of homogeneously dispersed nanocomposites. The melting energy(${\Delta}H_m$) was increased during hydrolysis process because of increase of crystallinity. As MMT played a role of reinforcing agent, the storage modulus was increase in case of PLLA/MMT nanocomposite, it was well coincided with our previous results. From SEM image, many tiny pinholes formed by spinodal decomposition were observed on the surface, and the shape of nanocomposite was maintained during hydrolysis process. In this study, it was shown that the control of biodegradation rate, thermal/mechnical property was possibile by incorporating MMT.
Keywords
PLLA/MMT nanocomposite; hydrolysis; thermal property; viscoelastic property; biodegradation rate;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 5  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 M. S. Reeve, S. P. McCarthy, M. J. Downey, and R. A. Gross, Macromol., 27, 825 (1994)   DOI   ScienceOn
2 Y. Matsusue, T. Yamamuro, M. Oka, Y. Shikinami, S. H. Hyon, and Y. Ikada, J. Biomed. Mater. Res., 26, 1553 (1992)   DOI
3 H. W. Kim, S. S. Kim, and J.M. Kim, Polymer(Korea), 22, 255 (1998)
4 I. Engelberg and J. Kohb, Biomaterials, 12, 292 (1991)   DOI   ScienceOn
5 D. S. G. Hu and H. J. Liu, Macromol. Chem. Phys., 195,1213 (1994)   DOI   ScienceOn
6 M. Therin, P. Christel, S. Li, H. Garreau, and M. Vert, Biomaterials, 13, 559 (1992)
7 J. W. Leenslag, A. J. Pennings, R. R. M. Bos, F. R. Rozema, and G. Boering, Biomaterials, 8. 311 (1987)   DOI   ScienceOn
8 D. S. G. Hu and H. J. Liu, J. Appl. Polym. Sci.,, 51,473 (1994)   DOI   ScienceOn
9 S. S. Ray, K. Yamada, M. Okamoto, and K. Ueda, Polymer, 44, 857 (2003)   DOI   ScienceOn
10 K. A. Athanasiou, G. G. Niederauer, and C. M. Agrawal, Biomaterials, 17, 93 (1996)   DOI   ScienceOn
11 S. S. Ray, K. Okamoto, P. Maiti, M. Okamoto, and J. Nanosci. Nanotechnol., 2, 471 (2002)
12 C. Nakafuku and M. Sakoda, Polym. J., 25,909 (1993)   DOI   ScienceOn
13 H. W. Kim, S. S. Kim, and J. M. Kim, Polymer(Korea), 22, 455 (1998)
14 Y. H. Lee, J. H. Lee, I. G. An, C. Kim, D. S. Lee, Y. G. Lee, and J. D. Nam, Biomaterials, in press
15 D. Cam, S. H. Hyon, and Y. Ikada, Biomaterials, 16, 833 (1995)   DOI   ScienceOn
16 J. H. Lee, T. G. Park, H. S. Park, D. S. Lee, Y. K Lee, S. C. Yoon, and J. D. Nam, Biomaterials, 24, 2773 (2003)   DOI   ScienceOn
17 M. Bognitzki, W. Czado, T. Frese, A. Schaper, M. Hellwig, M. Steinhart, A. Greiner, and J.H. Wendorff, Adv. Mater., 13, 70 (2001)   DOI   ScienceOn
18 S. S. Ray, P. Maiti, M. Okamoto, K. Yamada, and K. Ueda, Macromol, 35, 3104(2002)   DOI   ScienceOn