DOI QR코드

DOI QR Code

Effects of Oxyfluorinated Graphene Oxide Flake on Mechanical Properties of PMMA Artificial Marbles

함산소불소화 처리된 그래핀 산화물 플레이크가 PMMA 인조대리석의 기계적 물성에 미치는 영향

  • Kim, Hyo-Chul (Department of Fine Chemical Engineering Applied Chemistry, Chungnam National University) ;
  • Jeon, Son-Yeo (Department of Fine Chemical Engineering Applied Chemistry, Chungnam National University) ;
  • Kim, Hyung-Il (Department of Fine Chemical Engineering Applied Chemistry, Chungnam National University) ;
  • Lee, Young-Seak (Department of Fine Chemical Engineering Applied Chemistry, Chungnam National University) ;
  • Hong, Min-Hyuk (Lion Chemtech Co., Ltd.) ;
  • Choi, Ki-Seop (Lion Chemtech Co., Ltd.)
  • 김효철 (충남대학교 공과대학 정밀응용화학과) ;
  • 전소녀 (충남대학교 공과대학 정밀응용화학과) ;
  • 김형일 (충남대학교 공과대학 정밀응용화학과) ;
  • 이영석 (충남대학교 공과대학 정밀응용화학과) ;
  • 홍민혁 ((주)라이온켐텍) ;
  • 최기섭 ((주)라이온켐텍)
  • Received : 2011.04.26
  • Accepted : 2012.01.12
  • Published : 2012.05.25

Abstract

The nanocomposites containing graphene oxide flakes were prepared in order to improve the mechanical properties of artificial marbles based on poly(methyl methacrylate)(PMMA) matrix. Graphene oxide flakes were prepared from graphite by oxidation with Hummers method followed by exfoliation with thermal treatment. Surface of graphene oxide flakes were modified with oxyfluorination in various oxygene:fluorine compositions to improve the interfacial compatibility. The nanocomposites containing graphenes modified with oxyfluorination in the oxygen content of 50% and higher showed the significant increase in flexural strength, flexural modulus, Rockwell hardness, Barcol hardness, and Izod impact strength. The morphology of fractured surface showed the improved interfacial adhesion between PMMA matrix and the graphenes which were properly treated with oxyfluorination. The mechanical properties of nanocomposite were deteriorated by increasing the content of graphene above 0.07 phr due to the nonuniform dispersion of graphenes.

폴리(메틸메타크릴레이트)(PMMA) 매트릭스를 갖는 인조대리석의 기계적 강도를 향상시키기 위해 그래핀 산화물 플레이크(GOF)를 충전제로 사용하여 나노컴포지트를 제조하였다. 충전제로 사용한 GOF는 흑연을 Hummers법으로 산화한 후 열처리에 의해 박리시켜 제조하였다. PMMA 매트릭스와의 계면혼화성을 향상시키기 위하여 다양한 산소:불소 조성의 함산소불소화 처리로 GOF 계면을 개질시켰다. 산소함량 50% 이상에서 함산소불소화 처리한 GOF를 충전제로 사용한 나노컴포지트는 기존 인조대리석에 비해 굴곡강도, 굴곡탄성률, Rockwell경도, Barcol경도, Izod충격강도 모두 현저히 증가하였다. 적절히 함산소불소화 처리된 GOF는 PMMA 매트릭스와의 계면접착력이 우수함을 파단면의 모폴로지로부터 확인하였다. 하지만 GOF 충전제의 함량이 0.07 phr 이상으로 증가하면 충전제의 분산이 균일하지 못하여 인조대리석의 기계적 강도는 오히려 감소하는 경향을 나타내었다.

Keywords

Acknowledgement

Supported by : 한국산업기술진흥원

References

  1. M. B. Horn, Acrylic Resins, Reinhold Publishing Co., New York, 1960.
  2. H. Riddle, Monomeric Acrylic Esters, Reinhold Publishing Co., New York, 1954.
  3. H. Coyard, P. Deligny, N. Tuck, and P. Oldring, Resins for Surface Coatings: Acrylics and Epoxies, 2nd ed., John Wiley & Sons, New York, 2001.
  4. S. D. Kim, J. W. Kim, J. S. Im, Y. H. Kim, and Y. S. Lee, J. Fluorine Chem., 128, 60 (2007). https://doi.org/10.1016/j.jfluchem.2006.10.010
  5. Y. S. Lee, J. Fluorine Chem., 128, 392 (2007). https://doi.org/10.1016/j.jfluchem.2006.11.014
  6. A. K. Geim and K. S. Novoselov, Nat. Mater., 6, 183 (2007). https://doi.org/10.1038/nmat1849
  7. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 306, 666 (2004). https://doi.org/10.1126/science.1102896
  8. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature, 438, 197 (2005). https://doi.org/10.1038/nature04233
  9. Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature, 438, 201 (2005). https://doi.org/10.1038/nature04235
  10. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. Heer, Science, 312, 1191 (2006). https://doi.org/10.1126/science.1125925
  11. C. Gomez-Navarro, R. T. Weitz, A. M. Bittner, M. Scolari, A. Mews, M. Burghard, and K. Kern, Nano Lett., 7, 3499 (2007). https://doi.org/10.1021/nl072090c
  12. Y. W. Tan, Y. B. Zhang, H. L. Stormer, and P. Kim, Eur. Phys. J., 148, 15 (2007).
  13. J. H. Han, K. W. Cho, K. H. Lee, and H. Kim, Carbon, 36, 1801 (1998). https://doi.org/10.1016/S0008-6223(98)00150-X
  14. L. M. Ericson, H. Fan, H. Peng, V. A. Davis, W. Zhou, J. Sulpizio, Y. Wang, R. Booker, J. Vavro, C. Guthy, A. N. G. Parra-Vasquez, M. J. Kim, S. Ramesh, R. K. Saini, C. Kittrell, G. Lavin, H. Schmidt, W. W. Adams, W. E. Billups, M. Pasquali, W. F. Hwang, R. H. Hauge, J. E. Fischer, and R. E. Smalley, Science, 305, 1447 (2004). https://doi.org/10.1126/science.1101398
  15. W. Hummers and R. Offeman, J. Am. Chem. Soc., 80, 1339 (1958). https://doi.org/10.1021/ja01539a017
  16. G. Wang, X. Shen, J. Yao, and J. Park, Carbon, 47, 2049 (2009). https://doi.org/10.1016/j.carbon.2009.03.053
  17. X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai, Nat. Nanotechnol., 3, 538, (2008). https://doi.org/10.1038/nnano.2008.210
  18. S. M. Yun, S. W. Woo, E. Jeong, B. C. Bai, I. J. Park, and Y. S. Lee, Appl. Chem. Eng., 21, 343 (2010).
  19. Y. G. Bang, K. S. Choi, and C. H. Park, Korea Patent 0915122 (2009).
  20. Y. G. Bang, K. S. Choi, and C. H. Park, Korea Patent 0915129 (2009).
  21. Y. Geng, S. J. Wang, and J. K. Kim, J. Colloid Interf. Sci., 336, 592 (2009). https://doi.org/10.1016/j.jcis.2009.04.005
  22. J. F. Shen, N. Li, M. Shi, Y. Z. Hu, and M. X. Ye, J. Colloid Interf. Sci., 348, 377 (2010). https://doi.org/10.1016/j.jcis.2010.04.055
  23. S. S. Barton, J. Colloid Interf. Sci., 179, 449 (1996). https://doi.org/10.1006/jcis.1996.0236
  24. R. Bissessur, P. K. Y. Liu, and S. F. Scully, Synth. Met., 156, 1023 (2006). https://doi.org/10.1016/j.synthmet.2006.06.024
  25. T. Nakajima, A. Mabuchi, and R. Hagiwara, Carbon, 26, 357 (1988). https://doi.org/10.1016/0008-6223(88)90227-8
  26. J. Maultzsch, S. Reich, C. Thomsen, H. Requardt, and P. Ordejon, Phys. Rev. Lett., 92, 075501 (2004). https://doi.org/10.1103/PhysRevLett.92.075501
  27. D. Yoon, H. Moon, H. Cheong, J. S. Choi, J. A. Choi, and B. H. Park, J. Korean Phys. Soc., 55, 1299 (2009). https://doi.org/10.3938/jkps.55.1299
  28. A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Modern Phys., 81, 109 (2009). https://doi.org/10.1103/RevModPhys.81.109
  29. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Phys. Rev. Lett., 97, 187401 (2006). https://doi.org/10.1103/PhysRevLett.97.187401
  30. L. M. Malard, M. H. D. Guimaraes, D. L. Mafra, M. S. C. Mazzoni, and A. Jorio, Phys. Rev. B, 79, 125426 (2009). https://doi.org/10.1103/PhysRevB.79.125426
  31. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Carbon, 45, 1558 (2007). https://doi.org/10.1016/j.carbon.2007.02.034
  32. S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen, and R. S. Ruoff, J. Mater. Chem., 16, 155 (2006). https://doi.org/10.1039/b512799h
  33. C. Hontoria-Lucas, A. J. Lopez-Peinado, J. Lopez-Gonzalez, M. L. Rojas-Cervantes, and R. M. Martin-Aranda, Carbon, 33, 1585 (1995). https://doi.org/10.1016/0008-6223(95)00120-3
  34. T. Chiang and F. Seitz, Ann. Phys., 10, 61 (2001). https://doi.org/10.1002/1521-3889(200102)10:1/2<61::AID-ANDP61>3.0.CO;2-G
  35. S. Yumitori, J. Mater. Sci., 35, 139 (2000). https://doi.org/10.1023/A:1004761103919
  36. S. J. Park, S. Y. Song, J. S. Shin, and J. M. Rhee, J. Colloid Interf. Sci., 283, 190 (2005). https://doi.org/10.1016/j.jcis.2004.02.094
  37. F. Chamssedine and D. Claves, Carbon, 46, 957 (2008). https://doi.org/10.1016/j.carbon.2008.03.001
  38. C. Kozlowski and P. Sherwood, J. Chem. Soc. Farad. Trans. 1 - Phys. Chem. Condensed Phases, 80, 2099 (1984).
  39. M. I. Awad, M. Saleh, and T. Ohsaka, J. Solid State Electr., 12, 251 (2008). https://doi.org/10.1007/s10008-007-0385-2
  40. G. Zhang, S. Sun, D. Yang, J.-P. Dodelet, and E. Sacher, Carbon, 46, 196 (2008). https://doi.org/10.1016/j.carbon.2007.11.002
  41. D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Ventrice Jr., and R. S. Ruoff, Carbon, 47, 145 (2009). https://doi.org/10.1016/j.carbon.2008.09.045
  42. T. Mori and K. Tanaka, Acta Metall., 21, 571 (1973). https://doi.org/10.1016/0001-6160(73)90064-3
  43. Y. Benveniste, Mech. Mater., 6, 147 (1987). https://doi.org/10.1016/0167-6636(87)90005-6
  44. G. M. Odegard and T. S. Gates, J. Intell. Mater. Syst. Struct., 17, 239 (2006). https://doi.org/10.1177/1045389X06057523
  45. R. M. Christensen, J. Mech. Phys. Solids, 38, 379 (1990). https://doi.org/10.1016/0022-5096(90)90005-O
  46. C. Tucker and E. Liang, Compos. Sci. Technol., 59, 655 (1999). https://doi.org/10.1016/S0266-3538(98)00120-1
  47. H. Liu and L. Brinson, J. Appl. Mech., 73, 758 (2006). https://doi.org/10.1115/1.2204961
  48. J. J. Luo and I. M. Daniel, Compos. Sci. Technol., 63, 607 (2003).
  49. L. Shen and J. K. Li, Proc. Roy. Soc. a - Math. Phys. Eng. Sci., 461, 2057 (2005).
  50. P. Maravelaki-Kalaitzaki, D. Anglos, V. Kilikoglou, and V. Zafiropulos, Spectrochim. Acta B, 56, 887 (2001). https://doi.org/10.1016/S0584-8547(01)00226-9
  51. B. Doherty, M. Pamplona, R. Selvaggi, C. Miliani, M. Matteini, A. Sgamellotti, and B. Brunetti, Appl. Surf. Sci., 253, 4477 (2007). https://doi.org/10.1016/j.apsusc.2006.09.056
  52. V. Bams and S. Dewaele, Mater. Charact., 58, 1052 (2007). https://doi.org/10.1016/j.matchar.2007.05.004
  53. E. H. Hwang, Y. S. Ko, and J. K. Jeon, J. Ind. Eng. Chem., 14, 265 (2008). https://doi.org/10.1016/j.jiec.2007.11.002
  54. J. G. Williams, Compos. Sci. Technol., 70, 885 (2010). https://doi.org/10.1016/j.compscitech.2009.12.024
  55. O. A. Stapountzi, M. N. Charalambides, and J. G. Williams, Compos. Sci. Technol., 69, 2015 (2009). https://doi.org/10.1016/j.compscitech.2009.05.009