Browse > Article
http://dx.doi.org/10.7317/pk.2012.36.3.251

Effects of Oxyfluorinated Graphene Oxide Flake on Mechanical Properties of PMMA Artificial Marbles  

Kim, Hyo-Chul (Department of Fine Chemical Engineering Applied Chemistry, Chungnam National University)
Jeon, Son-Yeo (Department of Fine Chemical Engineering Applied Chemistry, Chungnam National University)
Kim, Hyung-Il (Department of Fine Chemical Engineering Applied Chemistry, Chungnam National University)
Lee, Young-Seak (Department of Fine Chemical Engineering Applied Chemistry, Chungnam National University)
Hong, Min-Hyuk (Lion Chemtech Co., Ltd.)
Choi, Ki-Seop (Lion Chemtech Co., Ltd.)
Publication Information
Polymer(Korea) / v.36, no.3, 2012 , pp. 251-261 More about this Journal
Abstract
The nanocomposites containing graphene oxide flakes were prepared in order to improve the mechanical properties of artificial marbles based on poly(methyl methacrylate)(PMMA) matrix. Graphene oxide flakes were prepared from graphite by oxidation with Hummers method followed by exfoliation with thermal treatment. Surface of graphene oxide flakes were modified with oxyfluorination in various oxygene:fluorine compositions to improve the interfacial compatibility. The nanocomposites containing graphenes modified with oxyfluorination in the oxygen content of 50% and higher showed the significant increase in flexural strength, flexural modulus, Rockwell hardness, Barcol hardness, and Izod impact strength. The morphology of fractured surface showed the improved interfacial adhesion between PMMA matrix and the graphenes which were properly treated with oxyfluorination. The mechanical properties of nanocomposite were deteriorated by increasing the content of graphene above 0.07 phr due to the nonuniform dispersion of graphenes.
Keywords
PMMA; graphene oxide flake; oxyfluorination; mechanical property; artificial marbles;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
1 O. A. Stapountzi, M. N. Charalambides, and J. G. Williams, Compos. Sci. Technol., 69, 2015 (2009).   DOI   ScienceOn
2 M. I. Awad, M. Saleh, and T. Ohsaka, J. Solid State Electr., 12, 251 (2008).   DOI
3 G. Zhang, S. Sun, D. Yang, J.-P. Dodelet, and E. Sacher, Carbon, 46, 196 (2008).   DOI   ScienceOn
4 D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Ventrice Jr., and R. S. Ruoff, Carbon, 47, 145 (2009).   DOI   ScienceOn
5 T. Mori and K. Tanaka, Acta Metall., 21, 571 (1973).   DOI   ScienceOn
6 Y. Benveniste, Mech. Mater., 6, 147 (1987).   DOI   ScienceOn
7 G. M. Odegard and T. S. Gates, J. Intell. Mater. Syst. Struct., 17, 239 (2006).   DOI
8 R. M. Christensen, J. Mech. Phys. Solids, 38, 379 (1990).   DOI   ScienceOn
9 C. Tucker and E. Liang, Compos. Sci. Technol., 59, 655 (1999).   DOI   ScienceOn
10 H. Liu and L. Brinson, J. Appl. Mech., 73, 758 (2006).   DOI   ScienceOn
11 J. J. Luo and I. M. Daniel, Compos. Sci. Technol., 63, 607 (2003).
12 L. Shen and J. K. Li, Proc. Roy. Soc. a - Math. Phys. Eng. Sci., 461, 2057 (2005).
13 P. Maravelaki-Kalaitzaki, D. Anglos, V. Kilikoglou, and V. Zafiropulos, Spectrochim. Acta B, 56, 887 (2001).   DOI   ScienceOn
14 B. Doherty, M. Pamplona, R. Selvaggi, C. Miliani, M. Matteini, A. Sgamellotti, and B. Brunetti, Appl. Surf. Sci., 253, 4477 (2007).   DOI   ScienceOn
15 V. Bams and S. Dewaele, Mater. Charact., 58, 1052 (2007).   DOI   ScienceOn
16 E. H. Hwang, Y. S. Ko, and J. K. Jeon, J. Ind. Eng. Chem., 14, 265 (2008).   DOI   ScienceOn
17 J. G. Williams, Compos. Sci. Technol., 70, 885 (2010).   DOI   ScienceOn
18 T. Nakajima, A. Mabuchi, and R. Hagiwara, Carbon, 26, 357 (1988).   DOI   ScienceOn
19 J. Maultzsch, S. Reich, C. Thomsen, H. Requardt, and P. Ordejon, Phys. Rev. Lett., 92, 075501 (2004).   DOI   ScienceOn
20 D. Yoon, H. Moon, H. Cheong, J. S. Choi, J. A. Choi, and B. H. Park, J. Korean Phys. Soc., 55, 1299 (2009).   DOI   ScienceOn
21 A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Modern Phys., 81, 109 (2009).   DOI
22 A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Phys. Rev. Lett., 97, 187401 (2006).   DOI   ScienceOn
23 L. M. Malard, M. H. D. Guimaraes, D. L. Mafra, M. S. C. Mazzoni, and A. Jorio, Phys. Rev. B, 79, 125426 (2009).   DOI   ScienceOn
24 S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Carbon, 45, 1558 (2007).   DOI   ScienceOn
25 S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen, and R. S. Ruoff, J. Mater. Chem., 16, 155 (2006).   DOI   ScienceOn
26 C. Hontoria-Lucas, A. J. Lopez-Peinado, J. Lopez-Gonzalez, M. L. Rojas-Cervantes, and R. M. Martin-Aranda, Carbon, 33, 1585 (1995).   DOI   ScienceOn
27 T. Chiang and F. Seitz, Ann. Phys., 10, 61 (2001).   DOI
28 F. Chamssedine and D. Claves, Carbon, 46, 957 (2008).   DOI   ScienceOn
29 S. Yumitori, J. Mater. Sci., 35, 139 (2000).   DOI   ScienceOn
30 S. J. Park, S. Y. Song, J. S. Shin, and J. M. Rhee, J. Colloid Interf. Sci., 283, 190 (2005).   DOI   ScienceOn
31 C. Kozlowski and P. Sherwood, J. Chem. Soc. Farad. Trans. 1 - Phys. Chem. Condensed Phases, 80, 2099 (1984).
32 C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. Heer, Science, 312, 1191 (2006).   DOI   ScienceOn
33 C. Gomez-Navarro, R. T. Weitz, A. M. Bittner, M. Scolari, A. Mews, M. Burghard, and K. Kern, Nano Lett., 7, 3499 (2007).   DOI   ScienceOn
34 Y. W. Tan, Y. B. Zhang, H. L. Stormer, and P. Kim, Eur. Phys. J., 148, 15 (2007).
35 J. H. Han, K. W. Cho, K. H. Lee, and H. Kim, Carbon, 36, 1801 (1998).   DOI   ScienceOn
36 L. M. Ericson, H. Fan, H. Peng, V. A. Davis, W. Zhou, J. Sulpizio, Y. Wang, R. Booker, J. Vavro, C. Guthy, A. N. G. Parra-Vasquez, M. J. Kim, S. Ramesh, R. K. Saini, C. Kittrell, G. Lavin, H. Schmidt, W. W. Adams, W. E. Billups, M. Pasquali, W. F. Hwang, R. H. Hauge, J. E. Fischer, and R. E. Smalley, Science, 305, 1447 (2004).   DOI   ScienceOn
37 W. Hummers and R. Offeman, J. Am. Chem. Soc., 80, 1339 (1958).   DOI
38 G. Wang, X. Shen, J. Yao, and J. Park, Carbon, 47, 2049 (2009).   DOI   ScienceOn
39 X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai, Nat. Nanotechnol., 3, 538, (2008).   DOI   ScienceOn
40 S. M. Yun, S. W. Woo, E. Jeong, B. C. Bai, I. J. Park, and Y. S. Lee, Appl. Chem. Eng., 21, 343 (2010).
41 J. F. Shen, N. Li, M. Shi, Y. Z. Hu, and M. X. Ye, J. Colloid Interf. Sci., 348, 377 (2010).   DOI   ScienceOn
42 Y. G. Bang, K. S. Choi, and C. H. Park, Korea Patent 0915122 (2009).
43 Y. G. Bang, K. S. Choi, and C. H. Park, Korea Patent 0915129 (2009).
44 Y. Geng, S. J. Wang, and J. K. Kim, J. Colloid Interf. Sci., 336, 592 (2009).   DOI   ScienceOn
45 S. S. Barton, J. Colloid Interf. Sci., 179, 449 (1996).   DOI   ScienceOn
46 R. Bissessur, P. K. Y. Liu, and S. F. Scully, Synth. Met., 156, 1023 (2006).   DOI   ScienceOn
47 M. B. Horn, Acrylic Resins, Reinhold Publishing Co., New York, 1960.
48 H. Riddle, Monomeric Acrylic Esters, Reinhold Publishing Co., New York, 1954.
49 S. D. Kim, J. W. Kim, J. S. Im, Y. H. Kim, and Y. S. Lee, J. Fluorine Chem., 128, 60 (2007).   DOI   ScienceOn
50 H. Coyard, P. Deligny, N. Tuck, and P. Oldring, Resins for Surface Coatings: Acrylics and Epoxies, 2nd ed., John Wiley & Sons, New York, 2001.
51 Y. S. Lee, J. Fluorine Chem., 128, 392 (2007).   DOI   ScienceOn
52 A. K. Geim and K. S. Novoselov, Nat. Mater., 6, 183 (2007).   DOI   ScienceOn
53 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 306, 666 (2004).   DOI   ScienceOn
54 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature, 438, 197 (2005).   DOI   ScienceOn
55 Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature, 438, 201 (2005).   DOI   ScienceOn