• Title/Summary/Keyword: polymer hybrids

Search Result 76, Processing Time 0.022 seconds

Fabrication and Properties of Conductive Carbon Fiber/Polyethylene Composite Films Fabricated under High Intensity Electric Fields : Effect of Polymer Sublayer (고전기장을 이용한 도전성 탄소섬유/폴리에틸렌 복합필름의 제조 및 특성 연구 : 고분자 점착하층의 영향)

  • Park, Min;Kim, Jun-Kyung;Lim, Soon-Ho;Ko, Moon-Bae;Choe, Chul-Rim;Mironov, V.S.;Bang, Hyo-Jae;Lee, Kwang-Hee
    • Polymer(Korea)
    • /
    • v.24 no.2
    • /
    • pp.268-275
    • /
    • 2000
  • We investigated the effect of polymer sublayer on volumetric resistivity and tensile strength of carbon fiber (CF)/polyethylene composite films fabricated under high intensity electric fields. The dependence of volumetric resistivity and tensile strength of the films on the polymer sublayer thickness or mass part exhibited complex behavior according to CF content and CF layer density in the films. As the thickness of polymer sublayer increases, two groups of processes at thermo-mechanical forming stage would take effects in the properties of the films. The first group comprises the increase of polymer layer thickness having reduced CF content compared with central or upper part of the film and insufficient wetting of CF resulting in the loosened structure near upper film side. The second group, on the other hand, is the improvement of mobility of molten sublayer leading to better distribution of CF throughout the film thickness and the formation of more compact structure. The different degree of contribution of these two competing processes at varied CF content and CF layer density could explain complex dependence of the film properties on the polymer sublayer. These results are important to optimize the electrical and mechanical properties of highly conductive polymer films, which can be used as electromagnetic interference shielding materials.

  • PDF

Zirconocene-catalyzed Copolymerizations of Ethylene with 5-Methyl-1,4-hexadiene as Non-conjugated Diene

  • Jin, Yong-Hyun;Im, Seung-Soon;Kim, Sang-Seob;Soonjong Kwak;Kim, Kwang-Ung;Kim, Keon-Hyeong;Kim, Jungahn
    • Macromolecular Research
    • /
    • v.10 no.2
    • /
    • pp.97-102
    • /
    • 2002
  • The mixtures of non-conjugated dienes, 4-methyl-1,4-hexadiene and 5-methyl-1,4-hexadiene (MHD), were successfully synthesized by the reaction of isoprene with ethylene using Fe(III)-based catalyst in toluene. The conversion was over 96 mol% on the basis of the initial amount of isoprene used. The production yield for MHD was nearly 50 mol%, the other was polyisoprene. The mixtures were successfully copolymerized with ethylene by using zirconium-based metallocenes. The products were characterized by the combinations of gas chromatography, high temperature gel permeation chromatography, $^1$H NMR, $^{13}$ C NMR, high temperature $^1$H NMR, UV/visible spectroscopy, and differential scanning calorimetry. It was found that 5-methyl-1,4-hexadiene was active enough to be incorporated into the copolymer chain but the corresponding isomeric material,4-methyl-1,4-hexadiene, was inactive in metallocene-catalyzed copolymerizations. Specifically, in the zirconocene-catalyzed copolymerizations of ethylene with MHD, ansa-structure catalysts seem to be more efficient than non-bridged type zirconocene. The degree of incorporation of MHD in the resulting copolymers was able to be controlled by the amount of non-conjugated dienes used initially.

Preparation of Nylon 6/ Clay Nanocomposites by Reactive Extrusion

  • Soonho Lim;Park, Jung-Hoon;Kim, Woo-Nyeon;Lee, Sang-Soo;Kim, Junkyung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.16-20
    • /
    • 2003
  • As the preliminary works for the preparation of exfoliated nanocomposites by reactive extrusion (REX) the modified anionic polymerization proceeded in a flask using an $\varepsilon$-caprolactam, catalyst, initiator, and clay. Polymerization methods were classified with a variation of the clay adding time. Intercalations mechanism of clay layers was investigated by measuring the WAXD peaks of clay with polymerization. In the preparation of nanocomposites, the molecular weight of nylon 6 was affected by the clay content. From the mechanical property measurement, improved properties were obtained in comparison to the neat nylon 6, and these properties were also affected by the molecular weight.

  • PDF

Organic-Inorganic Nanocomposites of Polystyrene with Polyhedral Oligomeric Silsesquioxane (실세스키옥세인을 사용한 폴리스티렌 나노복합재료)

  • Kim Kyung-Min
    • Polymer(Korea)
    • /
    • v.30 no.5
    • /
    • pp.380-384
    • /
    • 2006
  • Polyhedral oligomeric silsesquioxanes (POSS) were used as starting materials for the preparation of hybrid materials with polystyrene (PS). Optically transparent hybrids were obtained in a wide range of weight ratios when phenyl groups were introduced to each corner of the silsesquioxane. In contrast, as cyclohexyl groups were introduced, the obtained hybrid materials with PS resulted in turbid films. The aromatic (${\pi}-{\pi}$) interaction was confirmed to be a quite effective tool for the synthesis of organic-Inorganic polymer hybrids with POSS. The obtained homogeneous and transparent hybrid films could be dissolved in solvents and East again without any separation. The homogeneity of polymer hybrids with POSS was supported by the result of scanning electron microscopy (SEM), X-ray diffraction (XRD), and differential scanning calorimetry (DSC), which demonstrated a nanometer-level integration of PS and POSS.

Multiwalled Carbon Nanotubes Functionalized with PS via Emulsion Polymerization

  • Park, In-Cheol;Park, Min;Kim, Jun-Kyung;Lee, Hyun-Jung;Lee, Moo-Sung
    • Macromolecular Research
    • /
    • v.15 no.6
    • /
    • pp.498-505
    • /
    • 2007
  • This study demonstrated the in-situ functionalization with polymers of multi-walled carbon nanotubes (MWNTs) via emulsion polymerization. Polystyrene-functionalized MWNTs were prepared in an aqueous solution containing styrene monomer, non-ionic surfactant and a cationic coupling agent ([2-(methacryloyloxy)ethyl]trime-thylammonium chloride (MATMAC)). This process produced an interesting morphology in which the MWNTs, consisting of bead-string shapes or MWNTs embedded in the beads, when polymer beads were sufficiently large, produced nanohybrid material. This morphology was attributed to the interaction between the cationic coupling agent and the nanotube surface which induced polymerization within the hemimicellar or hemicylindrical structures of surfactant micelles on the surface of the nanotubes. In a solution containing MATMAC alone without surfactant, carbon nanotubes (CNTs) were not well-dispersed, and in a solution containing only surfactant without MATMAC, polymeric beads were synthesized in isolation from CNTs and continued to exist separately. The incorporation of MATMAC and surfactant together enabled large amounts of CNTs (> 0.05 wt%) to be well-dispersed in water and very effectively encapsulated by polymer chains. This method could be applied to other well-dispersed CNT solutions containing amphiphilic molecules, regardless of the type (i.e., anionic, cationic or nonionic). In this way, the solubility and dispersion of nanotubes could be increased in a solvent or polymer matrix. By enhancing the interfacial adhesion, this method might also contribute to the improved dispersion of nanotubes in a polymer matrix and thus the creation of superior polymer nanocomposites.

Synthesis and Characterization of ${\omega}-Sulfonated$ Polystyrene-stabilized Cadmium Sulfide Nanoclusters

  • Jin Yong Hyun;Kim Jungahn;Im Seung Soon
    • Macromolecular Research
    • /
    • v.12 no.6
    • /
    • pp.604-607
    • /
    • 2004
  • We report an important and useful method for preparing ${\omega}-sulfonated$ polystyrene-stabilized cadmium sulfide (CdS) nanoclusters. The ${\omega}-sulfonated$ polystyrene $(M_n\;=\;5000\;g/mol)$ was prepared successfully through chain-end sulfonation of poly(styryl)lithium using 1,3-propanesultone; the resulting polymer was used successfully as a polymeric stabilizing agent for the preparation of semiconductor CdS nanoclusters by reduction of cadmium acetate in a mixture of toluene and methanol (9:1, v/v). The nanoclusters that formed were characterized by a combination of transmission electron microscopy, X-ray diffraction, and UVN is spectroscopic analysis. The ${\omega}-sulfonated$ polystyrene-stabilized CdS nanoclusters synthesized in this study exhibited the cubic phase (zinc-blende phase) structure in the range of 2-8 nm.