Browse > Article

Multiwalled Carbon Nanotubes Functionalized with PS via Emulsion Polymerization  

Park, In-Cheol (Interdisciplinary Program of Photonics Electronic Materials, Chonnam National University)
Park, Min (Polymer Hybrids Center, Korea Institute of Science and Technology)
Kim, Jun-Kyung (Polymer Hybrids Center, Korea Institute of Science and Technology)
Lee, Hyun-Jung (Polymer Hybrids Center, Korea Institute of Science and Technology)
Lee, Moo-Sung (Interdisciplinary Program of Photonics Electronic Materials, Chonnam National University)
Publication Information
Macromolecular Research / v.15, no.6, 2007 , pp. 498-505 More about this Journal
Abstract
This study demonstrated the in-situ functionalization with polymers of multi-walled carbon nanotubes (MWNTs) via emulsion polymerization. Polystyrene-functionalized MWNTs were prepared in an aqueous solution containing styrene monomer, non-ionic surfactant and a cationic coupling agent ([2-(methacryloyloxy)ethyl]trime-thylammonium chloride (MATMAC)). This process produced an interesting morphology in which the MWNTs, consisting of bead-string shapes or MWNTs embedded in the beads, when polymer beads were sufficiently large, produced nanohybrid material. This morphology was attributed to the interaction between the cationic coupling agent and the nanotube surface which induced polymerization within the hemimicellar or hemicylindrical structures of surfactant micelles on the surface of the nanotubes. In a solution containing MATMAC alone without surfactant, carbon nanotubes (CNTs) were not well-dispersed, and in a solution containing only surfactant without MATMAC, polymeric beads were synthesized in isolation from CNTs and continued to exist separately. The incorporation of MATMAC and surfactant together enabled large amounts of CNTs (> 0.05 wt%) to be well-dispersed in water and very effectively encapsulated by polymer chains. This method could be applied to other well-dispersed CNT solutions containing amphiphilic molecules, regardless of the type (i.e., anionic, cationic or nonionic). In this way, the solubility and dispersion of nanotubes could be increased in a solvent or polymer matrix. By enhancing the interfacial adhesion, this method might also contribute to the improved dispersion of nanotubes in a polymer matrix and thus the creation of superior polymer nanocomposites.
Keywords
carbon nanotubes; emulsion polymerization; polymer functionalization; [2-(methacryloyloxy)ethyl]trime-thylammonium chloride;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 19  (Related Records In Web of Science)
Times Cited By SCOPUS : 19
연도 인용수 순위
1 N. Chopra, M. Majumder, and B. J. Hinds, Adv. Funct. Mater., 15, 858 (2005)   DOI   ScienceOn
2 H. T. Ham, C. M. Koo, S. O. Kim, Y. S. Choi, and I. J. Chung, Macromol. Res., 12, 384 (2004)   DOI
3 R. Zanella, E. V. Basiuk, P. Santiago, V. A. Basiuk, E. Mireles, I, Puente-Lee, and J. M. Saniger, J. Phys. Chem. B, 109, 16290 (2005)   DOI   ScienceOn
4 J. B. Cui, C. P. Daghlian, and U. J. Gibson, J. Appl. Phys., 98, 044320 (2005)   DOI   ScienceOn
5 H. Muramatsu, Y. A. Kim, T. Hayashi, M. Endo, A. Yonemoto, H. Arikai, F. Okino, and H. Touhara, Chem. Comm., 2002 (2005)
6 B. J. Landi, H. J. Ruf, J. J. Worman, and R. P. Raffaelle, J. Phys. Chem. B, 108, 17089 (2004)   DOI   ScienceOn
7 Y. Liu, Z. Yao, and A. Adronov, Macromolecules, 38, 1172 (2005)   DOI   ScienceOn
8 S. Qin, D. Qin, W. T. Ford, J. E. Herrera, D. E. Resasco, S. M. Bachilo, and R. B. Weisman, Macromolecules, 37, 3965 (2004)   DOI   ScienceOn
9 M. S. P. Shaffer and K. Koziol, Chem. Comm., 2074 (2002)
10 H. Kong, C. Gao, and D. Y. Yan, Macromolecules, 37, 4022 (2004)   DOI   ScienceOn
11 H. Cui, W. P. Wang, Y. Z. You, C. H. Liu, and P. H. Wang, Polymer, 45, 8717 (2004)   DOI   ScienceOn
12 G. Viswanathan, N. Chakrapani, H. Yang, B. Wei, H. Chung, K. Cho, C. Y. Ryu, and P. M. Ajayan, J. Am. Chem. Soc., 125, 9258 (2003)   DOI   ScienceOn
13 D. Baskaran, J. W. Mays, and M. S. Bratcher, Chem. Mater, 17, 3389 (2005)   DOI   ScienceOn
14 X. Lou, R. Daussin, S. Cuenot, A. S. Duwez, C. Pagnoulle, C. Detrembleur, C. Bailly, and R. Jerome, Chem. Mater., 16, 4005 (2004)   DOI   ScienceOn
15 W. H. Chang, I. W. Cheong, S. E. Shim, and S. Choe, Macromol. Res., 14, 545 (2006)   과학기술학회마을   DOI
16 M. Kang, S. J. Myung, and H.-J. Jin, Polymer, 47, 3961 (2006)   DOI   ScienceOn
17 E. J. Wanless and W. A. Ducker, J. Phys. Chem., 100, 3207 (1996)
18 I. Park, W. Lee, J. Kim, M. Park, and H. Lee, Sensor. Actuat. B-Chem., 126, 301 (2007)   DOI   ScienceOn
19 V. Datsyuk, C. Guerret-Piecourt, S. Dagreou, L. Billon, J.-C. Dupin, E. Flahaut, A. Peigney, and C. Laurent, Carbon, 43, 873 (2005)   DOI   ScienceOn
20 A. Satake, Y. Miyajima, and Y. Kobuke, Chem. Mater., 17, 716 (2005)   DOI   ScienceOn
21 G. L. Hwang, Y.-T. Shieh, and K. C. Hwang, Adv. Funct. Mater., 14, 487 (2004)   DOI   ScienceOn
22 S. Qin, D. Qin, W. T. Ford, D. E. Resasco, and J. E. Herrera, Macromolecules, 37, 752 (2004)   DOI   ScienceOn
23 P. Petrov, F. Stassin, C. Pagnoulle, and R. Jerome, Chem. Comm., 23, 2904 (2003)
24 G. Xu, W.-T. Wu, Y. Wang, W. Pang, Q. Zhu, P. Wang, and Y. You, Polymer, 47, 5909 (2006)   DOI   ScienceOn
25 X. Zhang, T. V. Sreekumar, T. Liu, and S. Kumar, J. Phys. Chem. B, 108, 16435 (2004)   DOI   ScienceOn
26 X. Zhang, J. Zhang, R. Wang, and Z. Uu, Carbon, 42, 1455 (2004)   DOI   ScienceOn
27 B. Zhao, H. Hu, A. Yu, D. Perea, and R. C. Haddon, J. Am. Chem. Soc., 127, 8197 (2005)   DOI   ScienceOn
28 E. Unger, M. Liebau, G. S. Duesberg, A. P. Graham, F. Kreupl, R. Seidel, and W. Hoenlein, Chem. Phys. Lett., 399, 280 (2004)   DOI
29 H.-M. Huang, I.-C. Liu, C. Y. Chang, H.-C. Tsai, C.-H. Hsu, and R. C.-C. Tsiang, J. Polym. Sci.; A, Polym. Chem., 42, 5802 (2004)   DOI   ScienceOn
30 H. Murakami and N. Nakashima, J. Nanosci. Nanotechnol., 6, 16 (2006)
31 H. J. Barraza, F. Pompeo, E. A. O'Rear, and D. E. Resasco, Nano Lett., 2, 797 (2002)
32 D. E. Hill, Y. Lin, A. M. Rao, L. F. Allard, and Y.-P. Sun, Macromolecules, 35, 9466 (2002)
33 Y. Sabba and E. L. Thomas, Macromolecules, 37, 4815 (2004)   DOI   ScienceOn
34 H. Peng, L. B. Alemany, J. L. Margrave, and V. N. Khabashesku, J. Am. Chem. Soc., 125, 15174 (2003)   DOI   ScienceOn
35 H. Hu, M. E. B. Zhao, M. E. ltkis, and R. C. Haddon, J. Phys. Chem. B, 107, 13838 (2003)   DOI   ScienceOn
36 J. Gao, M. E. Itkis, A. Yu, E. Bekyarova, B. Zhao, and R. C. Haddon, J. Am. Chem. Soc., 127, 3847 (2005)   DOI   ScienceOn
37 Y. W. Lee, S. M. Kang, K. R. Yoon, Y. S. Chi, I. S. Choi, S. P. Hong, B. C. Yu, H. J. Paik, and W. S. Yun, Macromol. Res., 13, 356 (2005)   DOI
38 W. Zhang and M. J. Yang, J. Mater. Sci., 39, 4921 (2004)
39 H. Kong, C. Gao, and D. Y. Yan, J. Mater. Chem., 14, 1401 (2004)   DOI   ScienceOn
40 S. Manne, J. P. Cleveland, H. E. Gaub, G. D. Stucky, and P. K. Hansma, Langmuir, 10, 4409 (1994)   DOI   ScienceOn
41 A. Star, Y. Uu, K. Grant, L. Ridvan, J. F. Stoddart, D. W. Steuerman, M. R. Diehl, A. Boukai, and J. R. Heath, Macromolecules, 36, 553 (2003)   DOI   ScienceOn
42 S. Banerjee, T. Hemraj-Benny, and S. S. Wong, Adv. Mater., 17, 17 (2005)   DOI   ScienceOn