Multiwalled Carbon Nanotubes Functionalized with PS via Emulsion Polymerization

  • Park, In-Cheol (Interdisciplinary Program of Photonics Electronic Materials, Chonnam National University) ;
  • Park, Min (Polymer Hybrids Center, Korea Institute of Science and Technology) ;
  • Kim, Jun-Kyung (Polymer Hybrids Center, Korea Institute of Science and Technology) ;
  • Lee, Hyun-Jung (Polymer Hybrids Center, Korea Institute of Science and Technology) ;
  • Lee, Moo-Sung (Interdisciplinary Program of Photonics Electronic Materials, Chonnam National University)
  • Published : 2007.10.31

Abstract

This study demonstrated the in-situ functionalization with polymers of multi-walled carbon nanotubes (MWNTs) via emulsion polymerization. Polystyrene-functionalized MWNTs were prepared in an aqueous solution containing styrene monomer, non-ionic surfactant and a cationic coupling agent ([2-(methacryloyloxy)ethyl]trime-thylammonium chloride (MATMAC)). This process produced an interesting morphology in which the MWNTs, consisting of bead-string shapes or MWNTs embedded in the beads, when polymer beads were sufficiently large, produced nanohybrid material. This morphology was attributed to the interaction between the cationic coupling agent and the nanotube surface which induced polymerization within the hemimicellar or hemicylindrical structures of surfactant micelles on the surface of the nanotubes. In a solution containing MATMAC alone without surfactant, carbon nanotubes (CNTs) were not well-dispersed, and in a solution containing only surfactant without MATMAC, polymeric beads were synthesized in isolation from CNTs and continued to exist separately. The incorporation of MATMAC and surfactant together enabled large amounts of CNTs (> 0.05 wt%) to be well-dispersed in water and very effectively encapsulated by polymer chains. This method could be applied to other well-dispersed CNT solutions containing amphiphilic molecules, regardless of the type (i.e., anionic, cationic or nonionic). In this way, the solubility and dispersion of nanotubes could be increased in a solvent or polymer matrix. By enhancing the interfacial adhesion, this method might also contribute to the improved dispersion of nanotubes in a polymer matrix and thus the creation of superior polymer nanocomposites.

Keywords

References

  1. D. E. Hill, Y. Lin, A. M. Rao, L. F. Allard, and Y.-P. Sun, Macromolecules, 35, 9466 (2002)
  2. B. Zhao, H. Hu, A. Yu, D. Perea, and R. C. Haddon, J. Am. Chem. Soc., 127, 8197 (2005) https://doi.org/10.1021/ja042924i
  3. Y. Sabba and E. L. Thomas, Macromolecules, 37, 4815 (2004) https://doi.org/10.1021/ma049706u
  4. S. Banerjee, T. Hemraj-Benny, and S. S. Wong, Adv. Mater., 17, 17 (2005) https://doi.org/10.1002/adma.200401340
  5. H. Peng, L. B. Alemany, J. L. Margrave, and V. N. Khabashesku, J. Am. Chem. Soc., 125, 15174 (2003) https://doi.org/10.1021/ja037746s
  6. N. Chopra, M. Majumder, and B. J. Hinds, Adv. Funct. Mater., 15, 858 (2005) https://doi.org/10.1002/adfm.200590000
  7. X. Zhang, T. V. Sreekumar, T. Liu, and S. Kumar, J. Phys. Chem. B, 108, 16435 (2004) https://doi.org/10.1021/jp0475988
  8. H. Hu, M. E. B. Zhao, M. E. ltkis, and R. C. Haddon, J. Phys. Chem. B, 107, 13838 (2003) https://doi.org/10.1021/jp035719i
  9. J. Gao, M. E. Itkis, A. Yu, E. Bekyarova, B. Zhao, and R. C. Haddon, J. Am. Chem. Soc., 127, 3847 (2005) https://doi.org/10.1021/ja0446193
  10. H. T. Ham, C. M. Koo, S. O. Kim, Y. S. Choi, and I. J. Chung, Macromol. Res., 12, 384 (2004) https://doi.org/10.1007/BF03218416
  11. R. Zanella, E. V. Basiuk, P. Santiago, V. A. Basiuk, E. Mireles, I, Puente-Lee, and J. M. Saniger, J. Phys. Chem. B, 109, 16290 (2005) https://doi.org/10.1021/jp0521454
  12. J. B. Cui, C. P. Daghlian, and U. J. Gibson, J. Appl. Phys., 98, 044320 (2005) https://doi.org/10.1063/1.2035893
  13. H. Muramatsu, Y. A. Kim, T. Hayashi, M. Endo, A. Yonemoto, H. Arikai, F. Okino, and H. Touhara, Chem. Comm., 2002 (2005)
  14. E. Unger, M. Liebau, G. S. Duesberg, A. P. Graham, F. Kreupl, R. Seidel, and W. Hoenlein, Chem. Phys. Lett., 399, 280 (2004) https://doi.org/10.1016/j.cplett.2004.10.021
  15. B. J. Landi, H. J. Ruf, J. J. Worman, and R. P. Raffaelle, J. Phys. Chem. B, 108, 17089 (2004) https://doi.org/10.1021/jp047521j
  16. S. Qin, D. Qin, W. T. Ford, D. E. Resasco, and J. E. Herrera, Macromolecules, 37, 752 (2004) https://doi.org/10.1021/ma035214q
  17. Y. Liu, Z. Yao, and A. Adronov, Macromolecules, 38, 1172 (2005) https://doi.org/10.1021/ma048273s
  18. V. Datsyuk, C. Guerret-Piecourt, S. Dagreou, L. Billon, J.-C. Dupin, E. Flahaut, A. Peigney, and C. Laurent, Carbon, 43, 873 (2005) https://doi.org/10.1016/j.carbon.2004.10.052
  19. W. Zhang and M. J. Yang, J. Mater. Sci., 39, 4921 (2004)
  20. S. Qin, D. Qin, W. T. Ford, J. E. Herrera, D. E. Resasco, S. M. Bachilo, and R. B. Weisman, Macromolecules, 37, 3965 (2004) https://doi.org/10.1021/ma049681z
  21. M. S. P. Shaffer and K. Koziol, Chem. Comm., 2074 (2002)
  22. H.-M. Huang, I.-C. Liu, C. Y. Chang, H.-C. Tsai, C.-H. Hsu, and R. C.-C. Tsiang, J. Polym. Sci.; A, Polym. Chem., 42, 5802 (2004) https://doi.org/10.1002/pola.20424
  23. H. Kong, C. Gao, and D. Y. Yan, Macromolecules, 37, 4022 (2004) https://doi.org/10.1021/ma049694c
  24. H. Kong, C. Gao, and D. Y. Yan, J. Mater. Chem., 14, 1401 (2004) https://doi.org/10.1039/b401180e
  25. G. Xu, W.-T. Wu, Y. Wang, W. Pang, Q. Zhu, P. Wang, and Y. You, Polymer, 47, 5909 (2006) https://doi.org/10.1016/j.polymer.2006.06.027
  26. H. Cui, W. P. Wang, Y. Z. You, C. H. Liu, and P. H. Wang, Polymer, 45, 8717 (2004) https://doi.org/10.1016/j.polymer.2004.10.068
  27. Y. W. Lee, S. M. Kang, K. R. Yoon, Y. S. Chi, I. S. Choi, S. P. Hong, B. C. Yu, H. J. Paik, and W. S. Yun, Macromol. Res., 13, 356 (2005) https://doi.org/10.1007/BF03218466
  28. G. Viswanathan, N. Chakrapani, H. Yang, B. Wei, H. Chung, K. Cho, C. Y. Ryu, and P. M. Ajayan, J. Am. Chem. Soc., 125, 9258 (2003) https://doi.org/10.1021/ja0354418
  29. H. J. Barraza, F. Pompeo, E. A. O'Rear, and D. E. Resasco, Nano Lett., 2, 797 (2002)
  30. D. Baskaran, J. W. Mays, and M. S. Bratcher, Chem. Mater, 17, 3389 (2005) https://doi.org/10.1021/cm047866e
  31. A. Satake, Y. Miyajima, and Y. Kobuke, Chem. Mater., 17, 716 (2005) https://doi.org/10.1021/cm048549a
  32. X. Lou, R. Daussin, S. Cuenot, A. S. Duwez, C. Pagnoulle, C. Detrembleur, C. Bailly, and R. Jerome, Chem. Mater., 16, 4005 (2004) https://doi.org/10.1021/cm0492585
  33. A. Star, Y. Uu, K. Grant, L. Ridvan, J. F. Stoddart, D. W. Steuerman, M. R. Diehl, A. Boukai, and J. R. Heath, Macromolecules, 36, 553 (2003) https://doi.org/10.1021/ma021417n
  34. H. Murakami and N. Nakashima, J. Nanosci. Nanotechnol., 6, 16 (2006)
  35. P. Petrov, F. Stassin, C. Pagnoulle, and R. Jerome, Chem. Comm., 23, 2904 (2003)
  36. X. Zhang, J. Zhang, R. Wang, and Z. Uu, Carbon, 42, 1455 (2004) https://doi.org/10.1016/j.carbon.2004.01.003
  37. G. L. Hwang, Y.-T. Shieh, and K. C. Hwang, Adv. Funct. Mater., 14, 487 (2004) https://doi.org/10.1002/adfm.200305382
  38. W. H. Chang, I. W. Cheong, S. E. Shim, and S. Choe, Macromol. Res., 14, 545 (2006) https://doi.org/10.1007/BF03218722
  39. M. Kang, S. J. Myung, and H.-J. Jin, Polymer, 47, 3961 (2006) https://doi.org/10.1016/j.polymer.2006.03.073
  40. E. J. Wanless and W. A. Ducker, J. Phys. Chem., 100, 3207 (1996)
  41. S. Manne, J. P. Cleveland, H. E. Gaub, G. D. Stucky, and P. K. Hansma, Langmuir, 10, 4409 (1994) https://doi.org/10.1021/la00016a005
  42. I. Park, W. Lee, J. Kim, M. Park, and H. Lee, Sensor. Actuat. B-Chem., 126, 301 (2007) https://doi.org/10.1016/j.snb.2006.12.045