• Title/Summary/Keyword: polymer etching

Search Result 163, Processing Time 0.041 seconds

Simulation Study on the Etching Mechanism of the Bosch Process (보쉬 공정의 식각 메커니즘에 대한 전산모사 연구)

  • Kim, Chang-Gyu;Moon, Jae-Seung;Lee, Won-Jong
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.10
    • /
    • pp.797-804
    • /
    • 2011
  • In this study, the mechanisms of the three steps (the polymer deposition step, the polymer etching step and the Si etching step) that constitute the Bosch process were investigated. The effects of radicals and ions on each step were quantitatively analyzed by comparing the simulated aspect ratio dependency of the deposition or etch rate with the experimental results. In the polymer deposition step, fluorocarbon polymer is deposited by chemical reactions of $CF_x$ radicals, of which the reaction probability is 0.13. Although the polymer etching step and the Si etching step were conducted under the same conditions, the etching mechanisms of polymer and Si were found to be quite different. In the polymer etching step, both chemical etching and physical sputter-etching contribute to the polymer etching. Whereas, in the Si etching step, Si is chemically etched by F radicals, of which the reactivity is greatly increased by the bombardment of energetic ions.

Anisotropic Etching Technology of Highly Doped Polysilicon by Mixed Chloroform (클로로포름($CHCl_3$)을 첨가한 고농도 폴리실리콘 이방성 식각 기술)

  • Lee, Jung-Hwan;Seo, Hee-Don;Choi, Se-Gon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.2
    • /
    • pp.101-105
    • /
    • 1998
  • This paper describes anisotropic etching technology of highly doped polysilicon. The main etching gases are $Cl_2$ and $SiCl_4$ for reactive ion etching of polysilicon. The mixed $CHCl_3$ to main etching gas makes polymer on etching side wall, so it prevents side etching of polysilicon. The etch rate of polysilicon is increased with increasing RF power. But the etching rate is decreased as the flow rate of $CHCl_3$ is increased with fixed RF power. The etch selectivity of polysilicon and $SiO_2$ is about 12:1. And that of polysilicon and $Si_3N_4$ is about 19:1. In the main etching gas condition, the slope of polysilicon is same as that of photoresist. But in the mixed $CHCl_3$ condition, the slope of polysilicon is larger than that of photoresist. This represents that the polymer made on side wall by added $CHCl_3$ prevents side etching, so anisotropic etching can be possible by polymer.

  • PDF

Modeling of Polymer Ablation with Excimer Lasers (폴리머 미세가공을 위한 레이저 어블레이션 모델링)

  • Yoon, Kyung-Koo;Bang, Se-Yoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.60-68
    • /
    • 2005
  • To investigate the effects of beam focusing in the etching of polymers with short pulse Excimer lasers, a polymer etching model of SSB's is combined with a beam focusing model. Through the numerical simulation, it was found that in the high laser fluence region, SSB model considering both photochemical and thermal contribution is considered to be suitable to predict the etched hole shape than a simple photochemical etching model. The average temperature distribution into the substance obtained by assuming 1-D heat transfer is found to be fairly similar to the fluence distribution on the ablated surface. The experimental etching data fur polymers are used to give material properties for ablation model. The fitted etch depth curve gives a nice agreement with the experimental data.

Via Contact and Deep Contact Hole Etch Process Using MICP Etching System (Multi-pole Inductively Coupled Plasma(MICP)를 이용한 Via Contact 및 Deep Contact Etch 특성 연구)

  • 설여송;김종천
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.3
    • /
    • pp.7-11
    • /
    • 2003
  • In this research, the etching characteristics of via contact and deep contact hole have been studied using multi-pole inductively coupled plasma(MICP) etching system. We investigated Plasma density of MICP source using the Langmuir probe and etching characteristics with RF frequency, wall temperature, chamber gap, and gas chemistry containing Carbon and Fluorine. As the etching time increases, formation of the polymer increases. To improve the polymer formation, we controlled the temperature of the reacting chamber, and we found that temperature of the chamber was very effective to decrease the polymer thickness. The deep contact etch profile and high selectivity(oxide to photoresist) have been achieved with the optimum mixed gas ratio containing C and F and the temperature control of the etching chamber.

  • PDF

Plasma Etching and Polymerization of Carbon Fiber (플라즈마 에칭과 중합에 의한 탄소섬유의 표면 개질)

  • H. M. Kang;Kim, N. I.;T. H. Yoon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.143-146
    • /
    • 2002
  • Unsized AS-4 carbon fibers were etched by RF plasma and then coated via plasma polymerization in order to enhance adhesion to vinyl ester resin. The gases utilized for the plasma etching were Ar, $N_2 and O_2$, while the monomers used for the plasma polymerization coating were acetylene, butadiene and acrylonitrile. The conditions for the plasma etching and the plasma polymerization were optimized by measuring interfacial adhesion with vinyl ester resin via micro-droplet tests. Among the treatment conditions, the combination of Ar plasma etching and acetylene plasma polymerization provided greatly improved interfacial shear strength (IFSS) of 69MPa compared to 43MPa with as-received carbon fiber. Based on the SEM analysis of failure surface and load-displacement curve, it was assume that the failure might be occurred at the carbon fiber and plasma polymer coating. The plasma etched and plasma polymer coated carbon fibers were subjected to analysis with SEM, XPS, FT-IR or Alpha-Step, and dynamic contact angles and tensile strengths were also evaluated. Plasma polymer coatings did not change tensile strength and surface roughness of fibers, but decreased water contact angle except butadiene plasma polymer coating, possibly owing to the functional groups introduced, as evidenced by FT-IR and XPS.

  • PDF

Comparison of Properties of Polymer Based Glass Lenses by Chemical Etching Reaction (고분자 안경 렌즈의 재질별 화학적 식각 반응성 비교)

  • Lee, Junghwa;Noh, Hyeran
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.17 no.2
    • /
    • pp.119-126
    • /
    • 2012
  • Purpose: To study changes in coating and lens materials after chemically etched different polymer based glass lenses in short-term and ambient condition using hydrofluoric acid. Methods: Vinyl ester polymer (Lens A) and thiourethane polymer (Lens B), both dyed in gray 70%, were etched in hydrofluoric acid solution for 5, 10, or 15 min. The mechanical properties, degrees of damages in hard coating, anti-reflection coating, and other coatings, rates of refractive index and light transmission of both polymer types were evaluated. Results: Rates of refractive index of both lens types were not changed significantly after chemical etching. However, anti-reflection coatings and hard coatings were removed and lens surfaces were damaged. As a results, UV light transmission of lenses increased and mechanical properties decreased. Chemical etching notably changed various properties of thiourethane polymer materials. Conclusions: Depending on types of polymer materials, chemical reactions by hydrofluoric acid were dissimilar. Thus, various properties of les materials were altered differently.

On the Etching Mechanism of Parylene-C in Inductively Coupled O2 Plasma

  • Shutov, D.A.;Kim, Sung-Ihl;Kwon, Kwang-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.4
    • /
    • pp.156-162
    • /
    • 2008
  • We report results on a study of inductively coupled plasma (ICP) etching of Parylene-C (poly-monochloro-para-xylylene) films using an $O_2$ gas. Effects of process parameters on etch rates were investigated and are discussed in this article from the standpoint of plasma parameter measurements, performed using a Langmuir probe and modeling calculation. Process parameters of interest include ICP source power and pressure. It was shown that major etching agent of polymer films was oxygen atoms O($^3P$). At the same time it was proposed that positive ions were not effective etchant, but ions played an important role as effective channel of energy transfer from plasma towards the polymer.

Plasma treatment on PMMA, PET & ABS for Superhydrophobicity (플라즈마 처리에 의한 PMMA, PET, ABS의 초발수 효과)

  • Choi, Gyoung-Rin;Noh, Jung-Hyun;Lee, Jun-Hee;Kim, Wan-Doo;Lim, Hyun-Eui
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1582-1584
    • /
    • 2008
  • This paper reports a simple fabrication method for creating the superhydrophobic polymer surface using a plasma etching. Generally, it is necessary for the superhydrophobic surfaces to have a rough structure on surface with the composition of the low surface energy. In this study, Poly(methyl methacrylate) (PMMA), poly(ethylene terephthalate) (PET), acrylonitrile butadiene styrene (ABS) with superhydrophobic surface were fabricated using $O_2$ plasma etching and vapor deposition with the fluoroalkylsilane self-assembled monolayers. The plasma treated polymer surfaces are covered with the nano-pillar shaped structures after treatment for $1{\sim}2min$. And these samples with FOTS SAMs coating are showed the superhydrophobicity having the water contact angle of around $150^{\circ}$ and sometimes around $180^{\circ}$ depending on the treatment time. Furthermore the nanostructured polymer is transparent for the visible light.

  • PDF

Surface Reaction Modeling for Plasma Etching of SiO2 Thin Film (실리콘 산화막의 플라즈마 식각에 대한 표면반응 모델링)

  • Im, YeonHo
    • Korean Chemical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.520-527
    • /
    • 2006
  • A realistic surface model is presented for prediction of various surface phenomena such as polymer deposition, suppression and sputtering as a function of incidence ion energy in high density fluorocarbon plasmas. This model followed ion enhanced etching model using the "well-mixed" or continuous stirred tank reactor (CSTR) assumption to the surface reaction zone. In this work, we suggested ion enhanced polymer formation and decomposition mechanisms that can capture $SiO_2$ etching through a steady-state polymer film on $SiO_2$ under the suppression regime. These mechanisms were derived based on experimental data and molecular dynamic simulation results from literatures. The model coefficients are obtained from fits to available beam and plasma experimental data. In order to show validity of our model, we compared the model results to high density fluorocarbon plasma etching data.