• Title/Summary/Keyword: polymer composite membrane

Search Result 236, Processing Time 0.024 seconds

Development and Charateriztion of Molybdophosphoric Acid Bonded Polyether Ether Ketone Polymer Composite Membrane for Water Electrolysis (수전해용 MoPA 결합된 폴리에테르 에테르 케톤 고분자 복합막의 개발 및 특성)

  • KIM, MIN JIN;KIM, BO YOUNG;MOON, SANG-BONG;CHUNG, JANG HOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.4
    • /
    • pp.338-344
    • /
    • 2017
  • Polyoxometal molybdophosphoric acid (MoPA) bonded polyether ether ketone (PEEK) composite membrane for water electrolysis has been investigated. The composited membrane, covalently cross linked (CL) sulfonated polyether ether ketone (SPEEK) with a bonded MoPA, was prepared in sulfonation of PEEK, cross linkage reaction with 1,4-diiodobutane, and addition with MoPA. PEEK was covalently cross-linked with 1,4-diiodobutane to improve mechanical strength and was added with MoPA to increase proton conductivity. MoPA should be fixed to back bone of SPEEK to prevent bleeding out. Therefore, the carbonyl group of SPEEK was reduced with NaBH4 and 3-isocyanatepropyltriethoxysilane (ICPTES) was added. The MoPA bonded composite was produced in the reaction of MoPA with 3-mercaptopropyltrimethoxvsilane (MPTMS). In conclusion, MoPA bonded CL-SPEEK composite membrane featured 0.129 S/cm of proton conductivity at $80^{\circ}C$, and 2,156 hours of chemical stability in Fenton test. These properties are better than those of membranes of other SPEEK system.

Research Trends of Polybenzimidazole-based Polymer Electrolyte Membranes for High-temperature Polymer Electrolyte Membrane Fuel Cells (고온 구동형 고분자 전해질 막 연료전지용 폴리벤즈이미다졸계 고분자 전해질 막의 개발 동향)

  • HyeonGyeong, Lee;Gabin, Lee;Kihyun, Kim
    • Membrane Journal
    • /
    • v.32 no.6
    • /
    • pp.442-455
    • /
    • 2022
  • High-temperature polymer electrolyte membrane fuel cell (HT-PEMFC) has been studied as an alternative to low-temperature PEMFC due to its fast activation of electrodes and high resistance to electrode poisoning by carbon monoxide. It is highly required to develop stable PEMs operating at high temperatures even doped by ion-conducting materials for the development of high-performance and durable HT-PEMFC systems. A number of studies have been conducted to develop polybenzimidazole (PBI)-based PEMs for applications in HT-PEMFC due to their high interaction with doped ion-conducting materials and outstanding thermomechanical stability under high-temperature operation. This review focused on the development of PBI-based PEMs showing high performance and durability. Firstly, the characteristic behavior of PBI-based PEMs doped with various ion-conducting materials including phosphoric acid was systematically investigated. And then, a comparison of the physicochemical properties of the PEMs according to the different membrane manufacturing processes was conducted. Secondly, the incorporation of porous polytetrafluoroethylene substrate and/or inorganic composites to PBI matrix to improve the membrane performances was studied. Finally, the construction of cross-linked structures into PBI-based PEM systems by polymer blending method was introduced to improve the PEM properties.

Membrane from Liquid Crystal Composite of Cellulose Acetate and Poly (4-vinyl pyridine) (셀룰로오스 아세테이트와 폴리비닐 피리딘 액정중합체의 박막에 관한 연구)

  • Hong, Young-Keun;Cho, Bong-Heuy
    • Textile Coloration and Finishing
    • /
    • v.3 no.2
    • /
    • pp.43-48
    • /
    • 1991
  • Cellulose acetate (CA) and poly-4-vinyl pyridine (PVP) in various weight proportions were mixed in a mixed solvent of trifluoroacetic acid: methylene chloride/6:4 (v:v). CA was miscible with PVP in that solvent system. CA/PVP/solvent show liquid crystal in a certain range of concentration and the nature of that liquid crystal was cholesteric. Films of the liquid crystal composite cast from the liquid crystal solutions of CA/PVP were tested in a viewpoint of biomembrane. Results show that considering permselectivity CA/PVP membrane is better than that of CA and CA/PVP membrane is closer to cell membrane.

  • PDF

Gas transport properties of alumina composite membranes

  • Lee, Hong-Joo;Hiroyuki Yamauchi;Hiroyuki Suda;Kenji Haraya
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.128-131
    • /
    • 2004
  • The composite mesoporous ceramic membranes were prepared with ${\gamma}$-alumina and poly (2, 6-dimethyl-l, 4-pyphenylene oxide) (PPO) on the surface of the macroporous $\alpha$-alumina ceramic membranes and the permeation results were compared with those of the $\alpha$-alumina membrane for large-scale applications. In the results of the transport experiments, the ceramic membranes gave high gas permeances mainly due to Knudsen diffusion and surface diffusion as an additional mechanism. And, the polymer modification increased the permeances of the strongly adsorbing gas components. In this study the modifications of alumina ceramic membranes could increase the gas permeation performances especially for the strongly absorbing gas components.

  • PDF

PVA/SSA/HPA Composite Membranes on the Application to Polymer Electrolyte Membrane Fuel Cell (PVA/SSA/HPA 복합막의 고분자전해질 연료전지에의 응용연구)

  • Oh Sae-Joong;Tongzhai Gao
    • Membrane Journal
    • /
    • v.16 no.1
    • /
    • pp.9-15
    • /
    • 2006
  • PVA/SSA/HPA composite membranes were prepared by the addition of SSA as a crosslinking agent and HPA such as PWA or SiWA. The water uptake decreased and the IEC increased as the HPA contents increased in PVA/SSA/HPA composite membranes. XRD results showed that HPA distributed well into the composite membranes as the HPA concentration increased, and SiWA dispersed better than PWA in the composite membranes. TGA results showed that PVA/SSA composite membranes were more heat-resistant than PVA due to the crosslinking of PVA, and the heat stability of the composite membranes improved much more as the concentration of HPA increased. The methanol barrier property of PVA/SSA/HPA composite membranes was superior to Nafion, and the methanol permeability of the composite membranes decreased as the concentration of HPA increased.

Characterization of PVdF/Laponite Reinforced Composite Membranes for PEMFC Surpport (PEMFC 지지체용 PVdF/Laponite 강화 복합막의 특성평가)

  • Oh, Seul-Gi;Hwang, Hae-Young;Kim, Hyoung-Juhn;Nam, Sang-Yong
    • Membrane Journal
    • /
    • v.20 no.2
    • /
    • pp.159-168
    • /
    • 2010
  • In this study, high porous PVdF flat sheet membranes were prepared to obtain reinforced membrane support for polymer electrolyte membrane fuel cell. Nano-size laponite was randomly dispersed in the membranes to improve mechanical property which lowered by the high porosity. The morphology and porosity of prepared PVdF/Laponite composite membranes were examined using the SEM analysis and the weight method and all membranes showed over 60% porosity. The membrane thermal stability depending on the laponite contents in the composite membranes was evaluated by membrane heat shrinkage at $105^{\circ}C$ and $135^{\circ}C$. MD and TD heat shrinkage of the PVdF composite membrane containing 5 wt% laponite was 2~3% and 2~3.5% at $135^{\circ}C$, respectively. The mechanical strength was enhanced after incorporating laponite particles and 30% increase in the modulus compared to pure PVdF membrane was obtained.

A study on composite membranes based on hydrocarbon polymers and ionic liquids for high temperature PEFCs (고온 PEFCs를 위한 탄화수소계열 고분자와 이온성 액체를 함유하는 복합막에 관한 연구)

  • Baek, Ji-Suk;Park, Jin-Soo;Kim, Kyung-Hyun;Moon, Gi-Young;Kim, Hye-Kyung;Choi, Young-Woo;Park, Go-Gun;Yang, Tae-Hyun;Kim, Chang-Soo;Shul, Young-Gun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.147-148
    • /
    • 2009
  • The water-like ionic liquids have been widely used to enable the proton conduction in ionic liquid based membranes at high temperature and anhydrous PEFCs. In this study, we synthesized various kinds of composite membranes based on hydrocarbon polymers having good thermal and mechanical stabilities at high temperatures and ionic liquids. The composite membrane consisting of hydrocarbon polymer and ionic liquid was characterized by thermogravimetric analyzer (TGA) and impedance spectroscopy. Consequently the non-aqueous composite membranes of a variety of hydrocarbon polymer and ionic liquids have good conductivity and thermal stability at high temperature conditions.

  • PDF

Gas Transport Behavior of Modified Carbon Nanotubes/Hydrogel Composite Membranes (개질된 탄소나노튜브/하이드로겔 복합막의 기체 투과 특성)

  • Yoon, Hee Wook;Lee, Hee Dae;Park, Ho Bum
    • Membrane Journal
    • /
    • v.23 no.5
    • /
    • pp.375-383
    • /
    • 2013
  • Nanomaterials having large surface area, uniform dimensions or pores can be utilized in various membrane applications Amongst them, many studies have been focused on nanocarbon materials: graphene, graphene oxide and carbon nanotubes. Carbon nanotubes, one-dimensional structure, have excellent characteristics in thermal, chemical and mechanical strength properties. However, carbon nanotubes was mainly used to reinforce mechanical properties of polymer materials in previous applications. In contrast to previous studies, we focused on modified carbon nanotubes/polyethylene glycol diacrylate (PEGDA) composite membrane preparation for improvement of permeability and selectivity on gas separation.

Ionic Polymer-Metal Composite Actuator with Increased Air-Operating stability by Using Ionic Liquids

  • Lee, Jang-Yeol;Han, Man-Jae;Lee, Sung-Won;Park, Sun-Jin;Yoon, Bye-Ri;Jho, Jae-Young
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.246-246
    • /
    • 2006
  • Ionic polymer-metal composite (IPMC) soaked with various ionic liquids was prepared by using polystyrene sulfonic acid-grafted poly(vinylidene fluoride-co-hexafluoropropylene) as ion-exchange membrane (IEM). The prepared IPMCs were effectively deformed three times larger and actuated for 300 times longer than those of Nafion with water at the same applied conditions. The experimental results indicated than the increase in the bending capability can be caused by the increase in the improved properties of the IEMs and ionic liquids such as uptake content and ionic conductivity. And air-operating stability of the IPMCs is appreciably governed by various physical and electrochemical properties of soaked solvents in IEMs.

  • PDF

The Effect of Crosslinking on the Actuation of Electroactive IPMC Prepared with Fluoroalkyl Methacrylate/Acrylic Acid/HEMA Copolymer (Fluoroalkyl Methacrylate/Acrylic Acid/2-HEMA 공중합체로 제조한 IPMC의 구동 특성에 미치는 가교의 영향)

  • Jeong, Han-Mo;La, Young-Soo
    • Polymer(Korea)
    • /
    • v.29 no.5
    • /
    • pp.463-467
    • /
    • 2005
  • In order to enhance the actuation force of ionic polymer-metal composite (IPMC) made with the acrylic copolymer of fluoroalkyl methacryate, acrylic acie, and 2-hydroxyethyl methacrylate(HEMA), the hydroxy group of HEMA was corsslinked with 1,3-diethoxy-1,1,3,3-tetramethyldisiloxane. The water uptake was reduced and the mechanical strengths and the actuation force of the membrane was improved by crosslinking. However, current and deformation responses of IPMC were decreased by crosslinking.