Browse > Article

PVA/SSA/HPA Composite Membranes on the Application to Polymer Electrolyte Membrane Fuel Cell  

Oh Sae-Joong (Department of Chemical Engineering, Sun-Moon University)
Tongzhai Gao (Department of Chemical Engineering, Sun-Moon University)
Publication Information
Membrane Journal / v.16, no.1, 2006 , pp. 9-15 More about this Journal
Abstract
PVA/SSA/HPA composite membranes were prepared by the addition of SSA as a crosslinking agent and HPA such as PWA or SiWA. The water uptake decreased and the IEC increased as the HPA contents increased in PVA/SSA/HPA composite membranes. XRD results showed that HPA distributed well into the composite membranes as the HPA concentration increased, and SiWA dispersed better than PWA in the composite membranes. TGA results showed that PVA/SSA composite membranes were more heat-resistant than PVA due to the crosslinking of PVA, and the heat stability of the composite membranes improved much more as the concentration of HPA increased. The methanol barrier property of PVA/SSA/HPA composite membranes was superior to Nafion, and the methanol permeability of the composite membranes decreased as the concentration of HPA increased.
Keywords
PVA; composite membrane; heteropoyacid; permeability;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 V. Ramani, H. R. Kunz, and J. M. Fenton, 'Investigation of Nafion/HPA composite membranes for high temperature/low relative humidity PEMFC operation', J. Membr. Sci., 232, 31 (2004)   DOI
2 Z. Q. Ma, P. Cheng, and T. S. Zhao, 'A palladium-alloy deposited nafion membrane for direct methanol fuel cells', J. Membr. Sci., 215, 327 (2003)   DOI   ScienceOn
3 C. W. Lin, R. Thangamuthu, and C. J. Yang, 'Proton-conducting membranes with high selectivity from phosphotungstic acid-doped polyvinylalcohol for DMFC applications', J. Membr. Sci., 253, 23 (2005)   DOI
4 J. W. Lim, H. B. Park, C. S. Lee, J. H. Jun, D. S. Kim, and Y. M. Lee, 'Crosslinked poly(vinyl alcohol) membranes containing sulfonic acid group: proton and methanol transport through membranes', J. Membr. Sci., 238, 143 (2004)   DOI
5 J. Larminie and A. Dicks, 'Fuel cell systems Explained', 2nd Ed., Wiley (2003)
6 J. Lin, H. Wang, S. Cheng, and K. Chan, 'Nafionpolyfurfuryl alcohol nanocomposite membranes for direct methanol fuel cells', J. Membr. Sci., 246, 95 (2005)   DOI   ScienceOn
7 J. Qiao, T. Hamaya, and T. Okada, 'New highly proton-conducting membrane poly(vinylpyrrolidone) modified poly(vinylalcohol)/2-acrylamino-2-methyl-propanesulfonic acid(PVA-PAMPS) for low temperature direct methanol fuel cells (DMFCs)', Polymer, 46, 10809 (2005)   DOI   ScienceOn
8 M. L. Ponce, L. Prado, B. Ruffmann, K. Richau, R. Mohr, and S. P. Nunes, 'Reduction of Methanol permeability in polyetherketone-heteropolyacid membranes', J. Membr. Sci., 217, 5 (2003)   DOI
9 H. B. Park, H. S. Shin, Y. M. Lee, and J. W. Rhim, 'Annealing effect of sulfonated polysulfone ionomer membranes on proton conducivity and methanol transport', J. Membr. Sci., 247, 103 (2005)   DOI
10 J. Kerres, C. M. Tang, and C. Graf, 'Improvement of properties of polyetherketone ionomer membranes by blending and crosslinking', Ind. Eng. Chem. Res., 43, 4571 (2004)   DOI   ScienceOn
11 S. Y. Lee and Y. M. Lee, 'Polyvinylalcohol membranes containing sulfonic acid groups for direct methanol fuel cell application', Membr. J. 14, 3, 240 (2004)