Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2022.32.6.442

Research Trends of Polybenzimidazole-based Polymer Electrolyte Membranes for High-temperature Polymer Electrolyte Membrane Fuel Cells  

HyeonGyeong, Lee (Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
Gabin, Lee (Department of Materials Science and Engineering, Gyeongsang National University)
Kihyun, Kim (Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
Publication Information
Membrane Journal / v.32, no.6, 2022 , pp. 442-455 More about this Journal
Abstract
High-temperature polymer electrolyte membrane fuel cell (HT-PEMFC) has been studied as an alternative to low-temperature PEMFC due to its fast activation of electrodes and high resistance to electrode poisoning by carbon monoxide. It is highly required to develop stable PEMs operating at high temperatures even doped by ion-conducting materials for the development of high-performance and durable HT-PEMFC systems. A number of studies have been conducted to develop polybenzimidazole (PBI)-based PEMs for applications in HT-PEMFC due to their high interaction with doped ion-conducting materials and outstanding thermomechanical stability under high-temperature operation. This review focused on the development of PBI-based PEMs showing high performance and durability. Firstly, the characteristic behavior of PBI-based PEMs doped with various ion-conducting materials including phosphoric acid was systematically investigated. And then, a comparison of the physicochemical properties of the PEMs according to the different membrane manufacturing processes was conducted. Secondly, the incorporation of porous polytetrafluoroethylene substrate and/or inorganic composites to PBI matrix to improve the membrane performances was studied. Finally, the construction of cross-linked structures into PBI-based PEM systems by polymer blending method was introduced to improve the PEM properties.
Keywords
polymer electrolyte membrane fuel cell; polymer electrolyte membrane; polybenzimidazole; composite membrane; cross-linked membrane;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 V. Atanasov, A. S. Lee, E. J. Park, S. Maurya, E. D. Baca, C. Fujimoto, and Y. S. Kim, "Synergistically integrated phosphonated poly (pentafluorostyrene) for fuel cells", Nat. Mater., 20, 370-377 (2021).   DOI
2 D. C. Seel and B. C. Benicewicz, "Polyphenylquinoxaline-based proton exchange membranes synthesized via the PPA Process for high temperature fuel cell systems", J. Membr. Sci., 405, 57-67 (2012).   DOI
3 G. Qian and B. C. Benicewicz, "Synthesis and characterization of high molecular weight hexafluoroisopropylidene-containing polybenzimidazole for high-temperature polymer electrolyte membrane fuel cells", J. Polym. Sci. A. Polym. Chem., 47, 4064-4073 (2009).   DOI
4 J. W. Lee, D. Y. Lee, H.-J. Kim, S. Y. Nam, J. J. Choi, J.-Y. Kim, J. H. Jang, E. Cho, S.-K. Kim, and S.-A. Hong, "Synthesis and characterization of acid-doped polybenzimidazole membranes by sol- gel and post-membrane casting method", J. Membr. Sci., 357, 130-133 (2010).   DOI
5 L. Xiao, H. Zhang, E. Scanlon, L. Ramanathan, E.-W. Choe, D. Rogers, T. Apple, and B. C. Benicewicz, "High-temperature polybenzimidazole fuel cell membranes via a sol- gel process", Chem. Mater., 17, 5328-5333 (2005).   DOI
6 Q. Li, R. He, J. Jensen, and N. Bjerrum, "PBI-based polymer membranes for high temperature fuel cells-preparation, characterization and fuel cell demonstration", Fuel Cells, 4, 147-159 (2004).   DOI
7 J. E. Del Bene and I. Cohen, "Molecular orbital theory of the hydrogen bond. 20. Pyrrole and imidazole as proton donors and proton acceptors", J. Am. Chem. Soc., 100, 5285-5290 (1978).   DOI
8 Y.-L. Ma, J. Wainright, M. Litt, and R. Savinell, "Conductivity of PBI membranes for high-temperature polymer electrolyte fuel cells", J. Electrochem. Soc., 151, A8 (2003).
9 X. Baozhong and O. Savadogo, "The effect of acid doping on the conductivity of polybenzimidazole (PBI)", J. New Mater. Electrochem. Syst., 2, (1999).
10 H. Pu, W. H. Meyer and G. Wegner, "Proton transport in polybenzimidazole blended with H3PO4 or H2SO4", J. Polym. Sci. B. Polym. Phys., 40, 663-669 (2002).   DOI
11 J. Fontanella, M. Wintersgill, J. Wainright, R. Savinell, and M. Litt, "High pressure electrical conductivity studies of acid doped polybenzimidazole", Electrochim. Acta, 43, 1289-1294 (1998).   DOI
12 L. Qingfeng, H. A. Hjuler, and N. Bjerrum, "Phosphoric acid doped polybenzimidazole membranes: physiochemical characterization and fuel cell applications", J. Appl. Electrochem., 31, 773-779 (2001).   DOI
13 J. Escorihuela, A. Garcia-Bernabe, and V. Compan, "A deep insight into different acidic additives as doping agents for enhancing proton conductivity on polybenzimidazole membranes", Polymers, 12, 1374 (2020).   DOI
14 A. Kannan, Q. Li, L. N. Cleemann, and J. O. Jensen, "Acid Distribution and Durability of HT-PEM Fuel Cells with Different Electrode Supports", Fuel Cells, 18, 103-112 (2018).   DOI
15 M. Prokop, M. Vesely, P. Capek, M. Paidar, and K. Bouzek, "High-temperature PEM fuel cell electrode catalyst layers part 1: Microstructure reconstructed using FIB-SEM tomography and its calculated effective transport properties", Electrochim. Acta, 413, 140133 (2022).
16 X. Li, H. Ma, H. Wang, S. Zhang, Z. Jiang, B. Liu, and M. D. Guiver, "Novel PA-doped polybenzimidazole membranes with high doping level, high proton conductivity and high stability for HT-PEMFCs", RSC Adv., 5, 53870-53873 (2015).   DOI
17 E. Quartarone, P. Mustarelli, A. Carollo, S. Grandi, A. Magistris, and Gerbaldi, "PBI composite and nanocomposite membranes for PEMFCs: the role of the filler", Fuel Cells, 9, 231-236 (2009).   DOI
18 F. Mack, K. Aniol, C. Ellwein, J. Kerres, and R. Zeis, "Novel phosphoric acid-doped PBI-blends as membranes for high-temperature PEM fuel cells", J. Mater. Chem. A, 3, 10864-10874 (2015).   DOI
19 A. LaConti, M. Hamdan, and R. McDonald, "Handbook of fuel cells-fundamentals, technology and applications", Wiley, New York, NY, 3, 647 (2003).
20 A. Collier, H. Wang, X. Z. Yuan, J. Zhang, and D. P. Wilkinson, "Degradation of polymer electrolyte membranes", Int. J. Hydrog. Energy, 31, 1838-1854 (2006).   DOI
21 J. Park, L. Wang, S. G. Advani, and A. K. Prasad, "Mechanical stability of H3PO4-doped PBI/hydrophilic-pretreated PTFE membranes for high temperature PEMFCs", Electrochim. Acta, 120, 30-38 (2014).   DOI
22 D. Qiu, L. Peng, X. Lai, M. Ni, and W. Lehnert, "Mechanical failure and mitigation strategies for the membrane in a proton exchange membrane fuel cell", Renew. Sust. Energ. Rev., 113, 109289 (2019).
23 S. J. Aravind, R. I. Jafri, N. Rajalakshmi, and S. Ramaprabhu, "Solar exfoliated graphene-carbon nanotube hybrid nano composites as efficient catalyst supports for proton exchange membrane fuel cells", J. Mater. Chem., 21, 18199-18204 (2011).   DOI
24 A. Pandele, F. Comanici, C. Carp, F. Miculescu, S. Voicu, V. Thakur, and B. Serban, "Synthesis and characterization of cellulose acetate-hydroxyapatite micro and nano composites membranes for water purification and biomedical applications", Vacuum, 146, 599-605 (2017).   DOI
25 S. Hassan and M. Gupta, "Development of high performance magnesium nano-composites using nano-Al2O3 as reinforcement", Mater. Sci. Eng. A, 392, 163-168 (2005).   DOI
26 D. HAN and D. J. YOO, "Mesoporous SiO2 mediated polybenzimidazole composite membranes for HT-PEMFC application", KHNES, 30, 128-135 (2019).
27 S. Bano, Y. S. Negi, R. Illathvalappil, S. Kurungot, and K. Ramya, "Studies on nano composites of SPEEK/ethylene glycol/cellulose nanocrystals as promising proton exchange membranes", Electrochim. Acta, 293, 260-272 (2019).   DOI
28 K. H. Lee, J. Y. Chu, A. R. Kim, and D. J. Yoo, "Effect of functionalized SiO2 toward proton conductivity of composite membranes for PEMFC application", Int. J. Energy. Res., 43, 5333-5345 (2019).   DOI
29 K. Selvakumar, A. R. Kim, M. R. Prabhu, and D. J. Yoo, "Structural and Thermal Analysis and Membrane Characteristics of Phosphoric Acid-doped Polybenzimidazole/Strontium Titanate Composite Membranes for HT-PEMFC Applications", Compos. Res., 34, 373-379 (2021).
30 N. Ioana-Maria, J. Aurora, C. Victoria, and B. Cristian, "Advanced polymeric materials based on PBI/SiO2 composite with high-performances designated for PEM-fuel cells." 2017 Electric Vehicles International Conference (EV), pp 1-6, (2017).
31 H. A. Arida, A. Al-Hajry, and I. A. Maghrabi, "A novel solid-state copper (II) thin-film micro-sensor based on organic membrane and titanium dioxide nano-composites", Int. J. Electrochem. Sci., 9, 426-434 (2014).   DOI
32 Y. S. Choi and I. J. Chung, "Comprehending polymer-clay nanocomposites and their future works", Korean Chem. Eng. Res., 46, 23-36 (2008).
33 H. Pu, L. Liu, Z. Chang, and J. Yuan, "Organic/ inorganic composite membranes based on polybenzimidazole and nano-SiO2", Electrochim. Acta, 54, 7536-7541 (2009).   DOI
34 Y. Ozdemir, N. Uregen, and Y. Devrim, "Polybenzimidazole based nanocomposite membranes with enhanced proton conductivity for high temperature PEM fuel cells", Int. J. Hydrog. Energy, 42, 2648-2657 (2017).   DOI
35 P. Agreement, "UNFCCC, Adoption of the Paris agreement. COP", 25th session Paris, 30, pp. 1-25 (2015).
36 F. J. Pinar, P. Canizares, M. A. Rodrigo, D. Ubeda, and J. Lobato, "Titanium composite PBI-based membranes for high temperature polymer electrolyte membrane fuel cells. Effect on titanium dioxide amount", RSC Adv., 2, 1547-1556 (2012).   DOI
37 H. Ko, M. Kim, S. Y. Nam, and K. Kim, "Research of cross-linked hydrocarbon based polymer electrolyte membranes for polymer electrolyte membrane fuel cell applications", Membr. J., 30, 395-408 (2020).   DOI
38 D. Streimikiene and S. Girdzijauskas, "Assessment of post-Kyoto climate change mitigation regimes impact on sustainable development", Renew. Sust. Energ. Rev., 13, 129-141 (2009).   DOI
39 H. P. Xu, X. H. Wen, and L. Kong, "High power DC-DC converter and fuel cell distributed generation system", Ieee Ind. Applic. Soc., 19, 1134-1139 (2004).
40 S. Mekhilef, R. Saidur, and A. Safari, "Comparative study of different fuel cell technologies", Renew Sust Energ Rev., 16, 981-989 (2012).   DOI
41 M. Miansari, K. Sedighi, M. Amidpour, E. Alizadeh, and M. Miansari, "Experimental and thermodynamic approach on proton exchange membrane fuel cell performance", J. Power Sources, 190, 356-361 (2009).   DOI
42 M. Kim, H. Ko, S. Y. Nam, and K. Kim, "Study on Control of Polymeric Architecture of Sulfonated Hydrocarbon-Based Polymers for High-Performance Polymer Electrolyte Membranes in Fuel Cell Applications", Polymers (Basel), 13, 3520 (2021).
43 K. Sopian and W. R. W. Daud, "Challenges and future developments in proton exchange membrane fuel cells", Renew. Energy, 31, 719-727 (2006).   DOI
44 A. Lysova, I. Ponomarev, and A. Yaroslavtsev, "Composite materials based on polybenzimidazole and inorganic oxides", Solid State Ion., 188, 132-134 (2011).   DOI
45 X. Chen, G. Qian, M. A. Molleo, B. C. Benicewicz, and H. J. Ploehn, "High temperature creep behavior of phosphoric acid-polybenzimidazole gel membranes", J. Polym. Sci. B: Polym. Phys., 53, 1527-1538 (2015).   DOI
46 J. Liao, Q. Li, H. Rudbeck, J. O. Jensen, A. Chromik, N. Bjerrum, J. Kerres, and W. Xing, "Oxidative degradation of polybenzimidazole membranes as electrolytes for high temperature proton exchange membrane fuel cells", Fuel Cells, 11, 745-755 (2011).   DOI
47 H. Hou, M. L. Di Vona and P. Knauth, "Building bridges: Crosslinking of sulfonated aromatic polymers-A review", J. Membr. Sci., 423, 113-127 (2012).   DOI
48 H. Li, G. Zhang, J. Wu, C. Zhao, Q. Jia, C. M. Lew, L. Zhang, Y. Zhang, M. Han, and J. Zhu, "A facile approach to prepare self-cross-linkable sulfonated poly (ether ether ketone) membranes for direct methanol fuel cells", J. Power Sources, 195, 8061-8066 (2010).   DOI
49 J. H. Kim, K. Kim, and S. Y. Nam, "Research trends of polybenzimidazole-based membranes for hydrogen purification applications", Appl. Chem. Eng., 31, 453-466 (2020).   DOI
50 I. B. Valtcheva, P. Marchetti, and A. G. Livingston, "Crosslinked polybenzimidazole membranes for organic solvent nanofiltration (OSN): Analysis of crosslinking reaction mechanism and effects of reaction parameters", J. Membr. Sci., 493, 568-579 (2015).   DOI
51 N. N. Krishnan, D. Joseph, N. M. H. Duong, A. Konovalova, J. H. Jang, H.-J. Kim, S. W. Nam, and D. Henkensmeier, "Phosphoric acid doped crosslinked polybenzimidazole (PBI-OO) blend membranes for high temperature polymer electrolyte fuel cells", J. Membr. Sci., 544, 416-424 (2017).   DOI
52 Harilal, R. Nayak, P. C. Ghosh, and T. Jana, "Cross-linked polybenzimidazole membrane for PEM fuel cells", ACS Appl. Polym. Mater., 2, 3161-3170 (2020).   DOI
53 R. Rosli, A. Sulong, W. Daud, M. Zulkifley, T. Husaini, M. Rosli, E. Majlan, and M. Haque, "A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system", Int. J. Hydrog. Energy, 42, 9293-9314 (2017).   DOI
54 W. Peng, F. Yao, J. Hu, Y. Liu, Z. Lu, Y. Liu, Z. Liu, K. Zeng, and G. Yang, "Renewable proteinbased monomer for thermosets: a case study on phthalonitrile resin", Green Chem., 20, 5158-5168 (2018).   DOI
55 O. Ijaodola, Z. El-Hassan, E. Ogungbemi, F. Khatib, T. Wilberforce, J. Thompson, and A. Olabi, "Energy efficiency improvements by investigating the water flooding management on proton exchange membrane fuel cell (PEMFC)", Energy, 179, 246-267 (2019).   DOI
56 J. M. Correa, F. A. Farret, L. N. Canha, and M. G. Simoes, "An electrochemical-based fuel-cell model suitable for electrical engineering automation approach", IEEE Trans. Ind. Electron., 51, 1103-1112 (2004).   DOI
57 H. Zhang and P. K. Shen, "Recent development of polymer electrolyte membranes for fuel cells", Chem. Rev., 112, 2780-2832 (2012).   DOI
58 F. Mura, R. Silva, and A. Pozio, "Study on the conductivity of recast Nafion®/montmorillonite and Nafion®/TiO2 composite membranes", Electrochim. Acta, 52, 5824-5828 (2007).   DOI
59 Y. Jeon, H.-k. Hwang, J. Park, H. Hwang, and Y.-G. Shul, "Temperature-dependent performance of the polymer electrolyte membrane fuel cell using short-side-chain perfluorosulfonic acid ionomer", Int. J. Hydrog. Energy, 39, 11690-11699 (2014).   DOI
60 H. Lee, M. Han, Y.-W. Choi, and B. Bae, "Hydrocarbon-based polymer electrolyte cerium composite membranes for improved proton exchange membrane fuel cell durability", J. Power Sources, 295, 221-227 (2015).   DOI
61 K. Oh and H. Ju, "Temperature dependence of CO poisoning in high-temperature proton exchange membrane fuel cells with phosphoric acid-doped polybenzimidazole membranes", Int. J. Hydrog. Energy, 40, 7743-7753 (2015).   DOI
62 T. Li, J. Shen, G. Chen, S. Guo, and G. Xie, "Performance comparison of proton exchange membrane fuel cells with nafion and aquivion perfluorosulfonic acids with different equivalent weights as the electrode binders", ACS Omega, 5, 17628-17636 (2020).   DOI
63 S. K. Das, A. Reis, and K. Berry, "Experimental evaluation of CO poisoning on the performance of a high temperature proton exchange membrane fuel cell", J. Power Sources, 193, 691-698 (2009).   DOI
64 J. Baschuk and X. Li, "Carbon monoxide poisoning of proton exchange membrane fuel cells", Int. J. Energy Res., 25, 695-713 (2001).   DOI
65 Q. Li, R. He, J.-A. Gao, J. O. Jensen, and N. J. Bjerrum, "The CO poisoning effect in PEMFCs operational at temperatures up to 200 C", J. Electrochem. Soc., 150, A1599 (2003).
66 C. Zhang, W. Zhou, M. M. Ehteshami, Y. Wang, and S. H. Chan, "Determination of the optimal operating temperature range for high temperature PEM fuel cell considering its performance, CO tolerance and degradation", Energy Convers. Manag., 105, 433-441 (2015).   DOI
67 S. Galbiati, A. Baricci, A. Casalegno, and R. Marchesi, "Degradation in phosphoric acid doped polymer fuel cells: A 6000 h parametric investigation", Int. J. Hydrog. Energy, 38, 6469-6480 (2013).   DOI
68 Q. Li, R. He, J. O. Jensen, and N. J. Bjerrum, "Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 C", Chem. Mater., 15, 4896-4915 (2003).   DOI
69 Q. Li, J. O. Jensen, R. F. Savinell, and N. J. Bjerrum, "High temperature proton exchange membranes based on polybenzimidazoles for fuel cells", Prog. Polym. Sci., 34, 449-477 (2009).   DOI
70 S. Bose, T. Kuila, T. X. H. Nguyen, N. H. Kim, K.-t. Lau, and J. H. Lee, "Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges", Prog. Polym. Sci., 36, 813-843 (2011).   DOI
71 J.-T. Wang, R. Savinell, J. Wainright, M. Litt, and H. Yu, "A H2O2 fuel cell using acid doped polybenzimidazole as polymer electrolyte", Electrochim. Acta, 41, 193-197 (1996).   DOI
72 J. Wainright, J. T. Wang, D. Weng, R. Savinell, and M. Litt, "Acid-doped polybenzimidazoles: a new polymer electrolyte", J. Electrochem. Soc., 142, L121 (1995).
73 R. Zeis, "Materials and characterization techniques for high-temperature polymer electrolyte membrane fuel cells", Beilstein J. Nanotechnol., 6, 68-83 (2015).   DOI
74 K. S. Kumar and M. R. Prabhu, "Enhancing proton conduction of poly (benzimidazole) with sulfonated titania nano composite membrane for PEM fuel cell applications", Macromol. Res., 29, 111-119 (2021).   DOI
75 L. K. Seng, M. S. Masdar, and L. K. Shyuan, "Ionic liquid in phosphoric acid-doped polybenzimidazole (PA-PBI) as electrolyte membranes for PEM fuel cells: A review", Membranes, 11, 728 (2021).
76 R. He, Q. Li, G. Xiao, and N. J. Bjerrum, "Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors", J. Membr. Sci., 226, 169-184 (2003).   DOI
77 Z. Yue, Y.-B. Cai, and S. Xu, "Phosphoric acid-doped cross-linked sulfonated poly (imide-benzimidazole) for proton exchange membrane fuel cell applications", J. Membr. Sci., 501, 220-227 (2016).   DOI
78 K. S. Lee, J. S. Spendelow, Y. K. Choe, C. Fujimoto, and Y. S. Kim, "An operationally flexible fuel cell based on quaternary ammonium-biphosphate ion pairs", Nat. Energy, 1, 1-7 (2016)