DOI QR코드

DOI QR Code

수전해용 MoPA 결합된 폴리에테르 에테르 케톤 고분자 복합막의 개발 및 특성

Development and Charateriztion of Molybdophosphoric Acid Bonded Polyether Ether Ketone Polymer Composite Membrane for Water Electrolysis

  • 투고 : 2017.07.25
  • 심사 : 2017.08.30
  • 발행 : 2017.08.30

초록

Polyoxometal molybdophosphoric acid (MoPA) bonded polyether ether ketone (PEEK) composite membrane for water electrolysis has been investigated. The composited membrane, covalently cross linked (CL) sulfonated polyether ether ketone (SPEEK) with a bonded MoPA, was prepared in sulfonation of PEEK, cross linkage reaction with 1,4-diiodobutane, and addition with MoPA. PEEK was covalently cross-linked with 1,4-diiodobutane to improve mechanical strength and was added with MoPA to increase proton conductivity. MoPA should be fixed to back bone of SPEEK to prevent bleeding out. Therefore, the carbonyl group of SPEEK was reduced with NaBH4 and 3-isocyanatepropyltriethoxysilane (ICPTES) was added. The MoPA bonded composite was produced in the reaction of MoPA with 3-mercaptopropyltrimethoxvsilane (MPTMS). In conclusion, MoPA bonded CL-SPEEK composite membrane featured 0.129 S/cm of proton conductivity at $80^{\circ}C$, and 2,156 hours of chemical stability in Fenton test. These properties are better than those of membranes of other SPEEK system.

키워드

참고문헌

  1. 수소, 연료전지 에너지관리공단 신, 재생에너지 센터2008. 7.10
  2. SS. A. Grigoriev, V. I. Porembsky, and V. N. Fateev, "Pure hydrogen production by PEM electrolysis for hydrogen energy", Int. J. Hydrogen Energy, Vol. 31, No. 2, 2006, pp. 171-175. https://doi.org/10.1016/j.ijhydene.2005.04.038
  3. A. Iulianelli, I. Gatto, F. Trotta, M. Biasizzo, E. Passalacqua, A. Carbone, and A. Basile, "Electrochemical characterization of sulfonated PEEK-WC membranes for PEM fuel cells", Int. J. Hydrogen Energy, Vol. 38, No. 1, 2013, pp. 551-557. https://doi.org/10.1016/j.ijhydene.2012.07.115
  4. K. M. Lee, J. Y. Woo, B. C. Jee, Y. K. Hwang, C. H. Yun, S. B. Moon, and A. S. Kang, "Effect of cross-linking agent and heteropolyacid (HPA) contents on physicochemical characteristics of covalently cross-linked sulfonated poly (ether ether ketone)/HPAs composite membranes for water electrolysis", Journal of Industrial and Engineering Chemistry, Vol. 17, No. 4, 2011, pp. 657-666. https://doi.org/10.1016/j.jiec.2011.02.017
  5. S. J. Zaidi, S. D. Mikhailenko, G. P. Robertson, M. D. Guiver, and S. Kaliaguine, "Proton Conduc ting Composite Membrane from Polyether ether ketone and Hetero-poly acids for Fuel Cel l Applications", J. Membr. Sci., Vol. 173, 2000, pp. 17-34. https://doi.org/10.1016/S0376-7388(00)00345-8
  6. Z. Jiang, X. Zhao, Y. Fu, and A. Manthiram, "Composite membranes based on sulfonated poly (ether ether ketone) and SDBS-adsorbed graphene oxide for direct methanol fuel cells", J. Mater. Chem., Vol. 22, 2012, pp. 24862-24869. https://doi.org/10.1039/c2jm35571j
  7. S. J. Peighambardoust, S. Rowshanzamir, and M. Amjadi, "Review of the proton exchange membranes for fuel cell applications", Int. J. Hydrogen Energy, Vol. 35, 2010, pp. 9349-9384. https://doi.org/10.1016/j.ijhydene.2010.05.017
  8. V. Ramani, H. R. Kunz, and J. M. Fenton, "Stabilized heteropolyacid/ Nafion composite membranes for elevated temperature/low relative humidity PEFC operation", Electrochimica Acta, Vol. 50, No. 5, 2005, pp. 1181-1187. https://doi.org/10.1016/j.electacta.2004.08.015
  9. U. Thanganathan and M. Nogami, "Synthesis of mixed composite membranes based polymer/HPA : Electrochemical performances on low temperature PEMFCs", Journal of Membrane Science, Vol. 411-412, 2012, pp. 109-116. https://doi.org/10.1016/j.memsci.2012.04.020
  10. H. Seo, Y. R. Song, Y. S. Oh, S. B. Moon, and J. H. Chung, "Synthesis and characterization of covalently cross-linked-SPEEK/Cs-substituted Mosia/Ceria membranes with Mosia for water eletrolysis", Trans. of the Korean Society of Hydrogen Energy, Vol. 26, No. 6, 2015, pp. 524-531. https://doi.org/10.7316/KHNES.2015.26.6.524
  11. S. Feng, Y. Shang, G. Liu, W. Dong, X. Xie, J. Xu, and V. K. Mathur, "Novel modification method to prepare crosslinked sulfonated poly(ether ether ketone)/silica hybrid membranes for fuel cells", J. Power Sources, Vol. 195, 2010, pp. 6450-6458. https://doi.org/10.1016/j.jpowsour.2010.02.067
  12. C. Arnold and R. A. Assink, "Structure-property relationships of anionic exchange membranes for Fe/Cr redox storage batteries." Journal of Applied Polymer Science, Vol. 29, No. 7, 1984, pp. 2317-2330. https://doi.org/10.1002/app.1984.070290708
  13. N. Li, Z. Cui, S. Zhang, S. Li, and F. Zhang, "Preparation and evaluation of a proton exchange membrane based on oxidation and water stable sulfonated polyimides." Journal of Power Sources, Vol. 172, No. 2, 2007, pp. 511-519. https://doi.org/10.1016/j.jpowsour.2007.07.069
  14. L. Trudell and D. F. Boltz, "Indirect Ultraviolet Spectrophotometric Determination of Silicon", Anal. Chem., Vol. 35, No. 13, 1963, pp. 2122-2124. https://doi.org/10.1021/ac60206a041
  15. S. U. I. Wenjie, Z. H. A. O. Wenjie, L. Q. Xing ZHANG, P. E. N. G. Shusen, W. U. Xuedong, and X. U. E. Qunji, "Influence of TEOS Content on Anti-corrosion Property of Mercapto Functional Organic Silane Based Sol-gel Coatings on Copper Alloy Surface", Journal of Chinese Society for Corrosion and Protection, Vol. 36, 2016, pp. 52-58.
  16. L. Matachowski, A. Drelinkiewicz, E. Lalik, D. Mucha, B. Gil, Z. Brozek-Mucha, and Z. Olejniczak, "The influence of reagent used for the precipitation of Cs2HPW12O40 salt on its textural and catalytic properties", Microporous and Mesoporous Materials, Vol. 144, 2011, pp. 46-56. https://doi.org/10.1016/j.micromeso.2011.06.007