DOI QR코드

DOI QR Code

Research Trends of Polybenzimidazole-based Polymer Electrolyte Membranes for High-temperature Polymer Electrolyte Membrane Fuel Cells

고온 구동형 고분자 전해질 막 연료전지용 폴리벤즈이미다졸계 고분자 전해질 막의 개발 동향

  • HyeonGyeong, Lee (Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Gabin, Lee (Department of Materials Science and Engineering, Gyeongsang National University) ;
  • Kihyun, Kim (Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
  • 이현경 (경상국립대학교 나노신소재융합공학과) ;
  • 이가빈 (경상국립대학교 나노.신소재공학부) ;
  • 김기현 (경상국립대학교 나노신소재융합공학과)
  • Received : 2022.12.14
  • Accepted : 2022.12.22
  • Published : 2022.12.31

Abstract

High-temperature polymer electrolyte membrane fuel cell (HT-PEMFC) has been studied as an alternative to low-temperature PEMFC due to its fast activation of electrodes and high resistance to electrode poisoning by carbon monoxide. It is highly required to develop stable PEMs operating at high temperatures even doped by ion-conducting materials for the development of high-performance and durable HT-PEMFC systems. A number of studies have been conducted to develop polybenzimidazole (PBI)-based PEMs for applications in HT-PEMFC due to their high interaction with doped ion-conducting materials and outstanding thermomechanical stability under high-temperature operation. This review focused on the development of PBI-based PEMs showing high performance and durability. Firstly, the characteristic behavior of PBI-based PEMs doped with various ion-conducting materials including phosphoric acid was systematically investigated. And then, a comparison of the physicochemical properties of the PEMs according to the different membrane manufacturing processes was conducted. Secondly, the incorporation of porous polytetrafluoroethylene substrate and/or inorganic composites to PBI matrix to improve the membrane performances was studied. Finally, the construction of cross-linked structures into PBI-based PEM systems by polymer blending method was introduced to improve the PEM properties.

고온 구동형 고분자 전해질 막 연료전지(high temperature polymer electrolyte membrane fuel cell, HT-PEMFC)는 전극의 빠른 활성과 피독 현상에 대한 높은 저항성으로 인해 저온 구동형 PEMFC의 대안으로 많은 연구가 진행되고 있다. 폴리벤즈이미다졸(polybenzimidazole, PBI)을 기반으로 한 PEM의 경우 고온 구동 조건에서 이온 전도성 물질과의 높은 상호 작용과 우수한 열적ㆍ기계적 안정성 특징으로 인해 HT-PEMFC용 PBI 기반 전해질 막 개발과 관련된 다양한 연구들이 진행되고 있다. 본 총설에서는 고성능/고내구성의 PBI 기반 PEM을 개발하기 위해 1) 인산 및 다양한 이온전도성 물질이 도핑된 PBI 막의 특성 분석과 막 제조법에 따른 PBI 막의 물성 비교에 관한 연구를 우선적으로 살펴본 후 2) 다공성 폴리테트라플루 오르에틸렌 지지체 및 무기 입자 혼입을 통한 PBI 복합 막의 성능 개선 연구 및 3) 고분자 블렌딩을 통해 가교 구조가 도입된 PBI 기반 가교 막의 내구성 향상에 관한 연구 동향에 대하여 소개하고자 한다.

Keywords

Acknowledgement

이 연구는 2022년도 정부의 재원으로 한국연구재단사업 (NRF-2019M3E6A1064797, NRF-2019R1F1A1060550, NRF-2020R1A6A1A03038697, NRF-2022R1F1A1072548)의 지원을 받아 수행되었습니다.

References

  1. H. Ko, M. Kim, S. Y. Nam, and K. Kim, "Research of cross-linked hydrocarbon based polymer electrolyte membranes for polymer electrolyte membrane fuel cell applications", Membr. J., 30, 395-408 (2020). https://doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.6.395
  2. D. Streimikiene and S. Girdzijauskas, "Assessment of post-Kyoto climate change mitigation regimes impact on sustainable development", Renew. Sust. Energ. Rev., 13, 129-141 (2009). https://doi.org/10.1016/j.rser.2007.07.002
  3. P. Agreement, "UNFCCC, Adoption of the Paris agreement. COP", 25th session Paris, 30, pp. 1-25 (2015).
  4. H. P. Xu, X. H. Wen, and L. Kong, "High power DC-DC converter and fuel cell distributed generation system", Ieee Ind. Applic. Soc., 19, 1134-1139 (2004).
  5. S. Mekhilef, R. Saidur, and A. Safari, "Comparative study of different fuel cell technologies", Renew Sust Energ Rev., 16, 981-989 (2012). https://doi.org/10.1016/j.rser.2011.09.020
  6. M. Miansari, K. Sedighi, M. Amidpour, E. Alizadeh, and M. Miansari, "Experimental and thermodynamic approach on proton exchange membrane fuel cell performance", J. Power Sources, 190, 356-361 (2009). https://doi.org/10.1016/j.jpowsour.2009.01.082
  7. M. Kim, H. Ko, S. Y. Nam, and K. Kim, "Study on Control of Polymeric Architecture of Sulfonated Hydrocarbon-Based Polymers for High-Performance Polymer Electrolyte Membranes in Fuel Cell Applications", Polymers (Basel), 13, 3520 (2021).
  8. K. Sopian and W. R. W. Daud, "Challenges and future developments in proton exchange membrane fuel cells", Renew. Energy, 31, 719-727 (2006). https://doi.org/10.1016/j.renene.2005.09.003
  9. O. Ijaodola, Z. El-Hassan, E. Ogungbemi, F. Khatib, T. Wilberforce, J. Thompson, and A. Olabi, "Energy efficiency improvements by investigating the water flooding management on proton exchange membrane fuel cell (PEMFC)", Energy, 179, 246-267 (2019). https://doi.org/10.1016/j.energy.2019.04.074
  10. J. M. Correa, F. A. Farret, L. N. Canha, and M. G. Simoes, "An electrochemical-based fuel-cell model suitable for electrical engineering automation approach", IEEE Trans. Ind. Electron., 51, 1103-1112 (2004). https://doi.org/10.1109/TIE.2004.834972
  11. R. Rosli, A. Sulong, W. Daud, M. Zulkifley, T. Husaini, M. Rosli, E. Majlan, and M. Haque, "A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system", Int. J. Hydrog. Energy, 42, 9293-9314 (2017). https://doi.org/10.1016/j.ijhydene.2016.06.211
  12. H. Zhang and P. K. Shen, "Recent development of polymer electrolyte membranes for fuel cells", Chem. Rev., 112, 2780-2832 (2012). https://doi.org/10.1021/cr200035s
  13. F. Mura, R. Silva, and A. Pozio, "Study on the conductivity of recast Nafion®/montmorillonite and Nafion®/TiO2 composite membranes", Electrochim. Acta, 52, 5824-5828 (2007). https://doi.org/10.1016/j.electacta.2007.02.081
  14. Y. Jeon, H.-k. Hwang, J. Park, H. Hwang, and Y.-G. Shul, "Temperature-dependent performance of the polymer electrolyte membrane fuel cell using short-side-chain perfluorosulfonic acid ionomer", Int. J. Hydrog. Energy, 39, 11690-11699 (2014). https://doi.org/10.1016/j.ijhydene.2014.05.105
  15. H. Lee, M. Han, Y.-W. Choi, and B. Bae, "Hydrocarbon-based polymer electrolyte cerium composite membranes for improved proton exchange membrane fuel cell durability", J. Power Sources, 295, 221-227 (2015). https://doi.org/10.1016/j.jpowsour.2015.07.001
  16. T. Li, J. Shen, G. Chen, S. Guo, and G. Xie, "Performance comparison of proton exchange membrane fuel cells with nafion and aquivion perfluorosulfonic acids with different equivalent weights as the electrode binders", ACS Omega, 5, 17628-17636 (2020). https://doi.org/10.1021/acsomega.0c02110
  17. S. K. Das, A. Reis, and K. Berry, "Experimental evaluation of CO poisoning on the performance of a high temperature proton exchange membrane fuel cell", J. Power Sources, 193, 691-698 (2009). https://doi.org/10.1016/j.jpowsour.2009.04.021
  18. J. Baschuk and X. Li, "Carbon monoxide poisoning of proton exchange membrane fuel cells", Int. J. Energy Res., 25, 695-713 (2001). https://doi.org/10.1002/er.713
  19. K. Oh and H. Ju, "Temperature dependence of CO poisoning in high-temperature proton exchange membrane fuel cells with phosphoric acid-doped polybenzimidazole membranes", Int. J. Hydrog. Energy, 40, 7743-7753 (2015). https://doi.org/10.1016/j.ijhydene.2015.01.107
  20. Q. Li, R. He, J.-A. Gao, J. O. Jensen, and N. J. Bjerrum, "The CO poisoning effect in PEMFCs operational at temperatures up to 200 C", J. Electrochem. Soc., 150, A1599 (2003).
  21. C. Zhang, W. Zhou, M. M. Ehteshami, Y. Wang, and S. H. Chan, "Determination of the optimal operating temperature range for high temperature PEM fuel cell considering its performance, CO tolerance and degradation", Energy Convers. Manag., 105, 433-441 (2015). https://doi.org/10.1016/j.enconman.2015.08.011
  22. S. Galbiati, A. Baricci, A. Casalegno, and R. Marchesi, "Degradation in phosphoric acid doped polymer fuel cells: A 6000 h parametric investigation", Int. J. Hydrog. Energy, 38, 6469-6480 (2013). https://doi.org/10.1016/j.ijhydene.2013.03.012
  23. Q. Li, R. He, J. O. Jensen, and N. J. Bjerrum, "Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 C", Chem. Mater., 15, 4896-4915 (2003). https://doi.org/10.1021/cm0310519
  24. S. Bose, T. Kuila, T. X. H. Nguyen, N. H. Kim, K.-t. Lau, and J. H. Lee, "Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges", Prog. Polym. Sci., 36, 813-843 (2011). https://doi.org/10.1016/j.progpolymsci.2011.01.003
  25. Q. Li, J. O. Jensen, R. F. Savinell, and N. J. Bjerrum, "High temperature proton exchange membranes based on polybenzimidazoles for fuel cells", Prog. Polym. Sci., 34, 449-477 (2009). https://doi.org/10.1016/j.progpolymsci.2008.12.003
  26. J.-T. Wang, R. Savinell, J. Wainright, M. Litt, and H. Yu, "A H2O2 fuel cell using acid doped polybenzimidazole as polymer electrolyte", Electrochim. Acta, 41, 193-197 (1996). https://doi.org/10.1016/0013-4686(95)00313-4
  27. J. Wainright, J. T. Wang, D. Weng, R. Savinell, and M. Litt, "Acid-doped polybenzimidazoles: a new polymer electrolyte", J. Electrochem. Soc., 142, L121 (1995).
  28. R. Zeis, "Materials and characterization techniques for high-temperature polymer electrolyte membrane fuel cells", Beilstein J. Nanotechnol., 6, 68-83 (2015). https://doi.org/10.3762/bjnano.6.8
  29. L. K. Seng, M. S. Masdar, and L. K. Shyuan, "Ionic liquid in phosphoric acid-doped polybenzimidazole (PA-PBI) as electrolyte membranes for PEM fuel cells: A review", Membranes, 11, 728 (2021).
  30. R. He, Q. Li, G. Xiao, and N. J. Bjerrum, "Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors", J. Membr. Sci., 226, 169-184 (2003). https://doi.org/10.1016/j.memsci.2003.09.002
  31. Z. Yue, Y.-B. Cai, and S. Xu, "Phosphoric acid-doped cross-linked sulfonated poly (imide-benzimidazole) for proton exchange membrane fuel cell applications", J. Membr. Sci., 501, 220-227 (2016). https://doi.org/10.1016/j.memsci.2015.11.045
  32. K. S. Kumar and M. R. Prabhu, "Enhancing proton conduction of poly (benzimidazole) with sulfonated titania nano composite membrane for PEM fuel cell applications", Macromol. Res., 29, 111-119 (2021). https://doi.org/10.1007/s13233-021-9014-7
  33. K. S. Lee, J. S. Spendelow, Y. K. Choe, C. Fujimoto, and Y. S. Kim, "An operationally flexible fuel cell based on quaternary ammonium-biphosphate ion pairs", Nat. Energy, 1, 1-7 (2016)
  34. V. Atanasov, A. S. Lee, E. J. Park, S. Maurya, E. D. Baca, C. Fujimoto, and Y. S. Kim, "Synergistically integrated phosphonated poly (pentafluorostyrene) for fuel cells", Nat. Mater., 20, 370-377 (2021). https://doi.org/10.1038/s41563-020-00841-z
  35. D. C. Seel and B. C. Benicewicz, "Polyphenylquinoxaline-based proton exchange membranes synthesized via the PPA Process for high temperature fuel cell systems", J. Membr. Sci., 405, 57-67 (2012). https://doi.org/10.1016/j.memsci.2012.02.044
  36. G. Qian and B. C. Benicewicz, "Synthesis and characterization of high molecular weight hexafluoroisopropylidene-containing polybenzimidazole for high-temperature polymer electrolyte membrane fuel cells", J. Polym. Sci. A. Polym. Chem., 47, 4064-4073 (2009). https://doi.org/10.1002/pola.23467
  37. J. W. Lee, D. Y. Lee, H.-J. Kim, S. Y. Nam, J. J. Choi, J.-Y. Kim, J. H. Jang, E. Cho, S.-K. Kim, and S.-A. Hong, "Synthesis and characterization of acid-doped polybenzimidazole membranes by sol- gel and post-membrane casting method", J. Membr. Sci., 357, 130-133 (2010). https://doi.org/10.1016/j.memsci.2010.04.010
  38. L. Xiao, H. Zhang, E. Scanlon, L. Ramanathan, E.-W. Choe, D. Rogers, T. Apple, and B. C. Benicewicz, "High-temperature polybenzimidazole fuel cell membranes via a sol- gel process", Chem. Mater., 17, 5328-5333 (2005). https://doi.org/10.1021/cm050831+
  39. Q. Li, R. He, J. Jensen, and N. Bjerrum, "PBI-based polymer membranes for high temperature fuel cells-preparation, characterization and fuel cell demonstration", Fuel Cells, 4, 147-159 (2004). https://doi.org/10.1002/fuce.200400020
  40. J. E. Del Bene and I. Cohen, "Molecular orbital theory of the hydrogen bond. 20. Pyrrole and imidazole as proton donors and proton acceptors", J. Am. Chem. Soc., 100, 5285-5290 (1978). https://doi.org/10.1021/ja00485a007
  41. Y.-L. Ma, J. Wainright, M. Litt, and R. Savinell, "Conductivity of PBI membranes for high-temperature polymer electrolyte fuel cells", J. Electrochem. Soc., 151, A8 (2003).
  42. X. Baozhong and O. Savadogo, "The effect of acid doping on the conductivity of polybenzimidazole (PBI)", J. New Mater. Electrochem. Syst., 2, (1999).
  43. H. Pu, W. H. Meyer and G. Wegner, "Proton transport in polybenzimidazole blended with H3PO4 or H2SO4", J. Polym. Sci. B. Polym. Phys., 40, 663-669 (2002). https://doi.org/10.1002/polb.10132
  44. J. Fontanella, M. Wintersgill, J. Wainright, R. Savinell, and M. Litt, "High pressure electrical conductivity studies of acid doped polybenzimidazole", Electrochim. Acta, 43, 1289-1294 (1998). https://doi.org/10.1016/S0013-4686(97)10032-9
  45. L. Qingfeng, H. A. Hjuler, and N. Bjerrum, "Phosphoric acid doped polybenzimidazole membranes: physiochemical characterization and fuel cell applications", J. Appl. Electrochem., 31, 773-779 (2001). https://doi.org/10.1023/A:1017558523354
  46. J. Escorihuela, A. Garcia-Bernabe, and V. Compan, "A deep insight into different acidic additives as doping agents for enhancing proton conductivity on polybenzimidazole membranes", Polymers, 12, 1374 (2020). https://doi.org/10.3390/polym12020276
  47. A. Kannan, Q. Li, L. N. Cleemann, and J. O. Jensen, "Acid Distribution and Durability of HT-PEM Fuel Cells with Different Electrode Supports", Fuel Cells, 18, 103-112 (2018). https://doi.org/10.1002/fuce.201700181
  48. M. Prokop, M. Vesely, P. Capek, M. Paidar, and K. Bouzek, "High-temperature PEM fuel cell electrode catalyst layers part 1: Microstructure reconstructed using FIB-SEM tomography and its calculated effective transport properties", Electrochim. Acta, 413, 140133 (2022).
  49. X. Li, H. Ma, H. Wang, S. Zhang, Z. Jiang, B. Liu, and M. D. Guiver, "Novel PA-doped polybenzimidazole membranes with high doping level, high proton conductivity and high stability for HT-PEMFCs", RSC Adv., 5, 53870-53873 (2015). https://doi.org/10.1039/C5RA05953D
  50. E. Quartarone, P. Mustarelli, A. Carollo, S. Grandi, A. Magistris, and Gerbaldi, "PBI composite and nanocomposite membranes for PEMFCs: the role of the filler", Fuel Cells, 9, 231-236 (2009). https://doi.org/10.1002/fuce.200800145
  51. A. LaConti, M. Hamdan, and R. McDonald, "Handbook of fuel cells-fundamentals, technology and applications", Wiley, New York, NY, 3, 647 (2003).
  52. A. Collier, H. Wang, X. Z. Yuan, J. Zhang, and D. P. Wilkinson, "Degradation of polymer electrolyte membranes", Int. J. Hydrog. Energy, 31, 1838-1854 (2006). https://doi.org/10.1016/j.ijhydene.2006.05.006
  53. F. Mack, K. Aniol, C. Ellwein, J. Kerres, and R. Zeis, "Novel phosphoric acid-doped PBI-blends as membranes for high-temperature PEM fuel cells", J. Mater. Chem. A, 3, 10864-10874 (2015). https://doi.org/10.1039/C5TA01337B
  54. J. Park, L. Wang, S. G. Advani, and A. K. Prasad, "Mechanical stability of H3PO4-doped PBI/hydrophilic-pretreated PTFE membranes for high temperature PEMFCs", Electrochim. Acta, 120, 30-38 (2014). https://doi.org/10.1016/j.electacta.2013.12.030
  55. D. Qiu, L. Peng, X. Lai, M. Ni, and W. Lehnert, "Mechanical failure and mitigation strategies for the membrane in a proton exchange membrane fuel cell", Renew. Sust. Energ. Rev., 113, 109289 (2019).
  56. S. J. Aravind, R. I. Jafri, N. Rajalakshmi, and S. Ramaprabhu, "Solar exfoliated graphene-carbon nanotube hybrid nano composites as efficient catalyst supports for proton exchange membrane fuel cells", J. Mater. Chem., 21, 18199-18204 (2011). https://doi.org/10.1039/c1jm13908h
  57. A. Pandele, F. Comanici, C. Carp, F. Miculescu, S. Voicu, V. Thakur, and B. Serban, "Synthesis and characterization of cellulose acetate-hydroxyapatite micro and nano composites membranes for water purification and biomedical applications", Vacuum, 146, 599-605 (2017). https://doi.org/10.1016/j.vacuum.2017.05.008
  58. S. Hassan and M. Gupta, "Development of high performance magnesium nano-composites using nano-Al2O3 as reinforcement", Mater. Sci. Eng. A, 392, 163-168 (2005). https://doi.org/10.1016/j.msea.2004.09.047
  59. H. A. Arida, A. Al-Hajry, and I. A. Maghrabi, "A novel solid-state copper (II) thin-film micro-sensor based on organic membrane and titanium dioxide nano-composites", Int. J. Electrochem. Sci., 9, 426-434 (2014). https://doi.org/10.1016/S1452-3981(23)07729-5
  60. Y. S. Choi and I. J. Chung, "Comprehending polymer-clay nanocomposites and their future works", Korean Chem. Eng. Res., 46, 23-36 (2008).
  61. D. HAN and D. J. YOO, "Mesoporous SiO2 mediated polybenzimidazole composite membranes for HT-PEMFC application", KHNES, 30, 128-135 (2019).
  62. K. H. Lee, J. Y. Chu, A. R. Kim, and D. J. Yoo, "Effect of functionalized SiO2 toward proton conductivity of composite membranes for PEMFC application", Int. J. Energy. Res., 43, 5333-5345 (2019). https://doi.org/10.1002/er.4610
  63. K. Selvakumar, A. R. Kim, M. R. Prabhu, and D. J. Yoo, "Structural and Thermal Analysis and Membrane Characteristics of Phosphoric Acid-doped Polybenzimidazole/Strontium Titanate Composite Membranes for HT-PEMFC Applications", Compos. Res., 34, 373-379 (2021).
  64. N. Ioana-Maria, J. Aurora, C. Victoria, and B. Cristian, "Advanced polymeric materials based on PBI/SiO2 composite with high-performances designated for PEM-fuel cells." 2017 Electric Vehicles International Conference (EV), pp 1-6, (2017).
  65. S. Bano, Y. S. Negi, R. Illathvalappil, S. Kurungot, and K. Ramya, "Studies on nano composites of SPEEK/ethylene glycol/cellulose nanocrystals as promising proton exchange membranes", Electrochim. Acta, 293, 260-272 (2019). https://doi.org/10.1016/j.electacta.2018.10.029
  66. H. Pu, L. Liu, Z. Chang, and J. Yuan, "Organic/ inorganic composite membranes based on polybenzimidazole and nano-SiO2", Electrochim. Acta, 54, 7536-7541 (2009). https://doi.org/10.1016/j.electacta.2009.08.011
  67. Y. Ozdemir, N. Uregen, and Y. Devrim, "Polybenzimidazole based nanocomposite membranes with enhanced proton conductivity for high temperature PEM fuel cells", Int. J. Hydrog. Energy, 42, 2648-2657 (2017). https://doi.org/10.1016/j.ijhydene.2016.04.132
  68. F. J. Pinar, P. Canizares, M. A. Rodrigo, D. Ubeda, and J. Lobato, "Titanium composite PBI-based membranes for high temperature polymer electrolyte membrane fuel cells. Effect on titanium dioxide amount", RSC Adv., 2, 1547-1556 (2012). https://doi.org/10.1039/C1RA01084K
  69. A. Lysova, I. Ponomarev, and A. Yaroslavtsev, "Composite materials based on polybenzimidazole and inorganic oxides", Solid State Ion., 188, 132-134 (2011). https://doi.org/10.1016/j.ssi.2010.10.010
  70. X. Chen, G. Qian, M. A. Molleo, B. C. Benicewicz, and H. J. Ploehn, "High temperature creep behavior of phosphoric acid-polybenzimidazole gel membranes", J. Polym. Sci. B: Polym. Phys., 53, 1527-1538 (2015). https://doi.org/10.1002/polb.23791
  71. J. Liao, Q. Li, H. Rudbeck, J. O. Jensen, A. Chromik, N. Bjerrum, J. Kerres, and W. Xing, "Oxidative degradation of polybenzimidazole membranes as electrolytes for high temperature proton exchange membrane fuel cells", Fuel Cells, 11, 745-755 (2011). https://doi.org/10.1002/fuce.201000146
  72. H. Hou, M. L. Di Vona and P. Knauth, "Building bridges: Crosslinking of sulfonated aromatic polymers-A review", J. Membr. Sci., 423, 113-127 (2012). https://doi.org/10.1016/j.memsci.2012.07.038
  73. H. Li, G. Zhang, J. Wu, C. Zhao, Q. Jia, C. M. Lew, L. Zhang, Y. Zhang, M. Han, and J. Zhu, "A facile approach to prepare self-cross-linkable sulfonated poly (ether ether ketone) membranes for direct methanol fuel cells", J. Power Sources, 195, 8061-8066 (2010). https://doi.org/10.1016/j.jpowsour.2010.06.106
  74. J. H. Kim, K. Kim, and S. Y. Nam, "Research trends of polybenzimidazole-based membranes for hydrogen purification applications", Appl. Chem. Eng., 31, 453-466 (2020). https://doi.org/10.14478/ACE.2020.1054
  75. I. B. Valtcheva, P. Marchetti, and A. G. Livingston, "Crosslinked polybenzimidazole membranes for organic solvent nanofiltration (OSN): Analysis of crosslinking reaction mechanism and effects of reaction parameters", J. Membr. Sci., 493, 568-579 (2015). https://doi.org/10.1016/j.memsci.2015.06.056
  76. N. N. Krishnan, D. Joseph, N. M. H. Duong, A. Konovalova, J. H. Jang, H.-J. Kim, S. W. Nam, and D. Henkensmeier, "Phosphoric acid doped crosslinked polybenzimidazole (PBI-OO) blend membranes for high temperature polymer electrolyte fuel cells", J. Membr. Sci., 544, 416-424 (2017). https://doi.org/10.1016/j.memsci.2017.09.049
  77. Harilal, R. Nayak, P. C. Ghosh, and T. Jana, "Cross-linked polybenzimidazole membrane for PEM fuel cells", ACS Appl. Polym. Mater., 2, 3161-3170 (2020). https://doi.org/10.1021/acsapm.0c00350
  78. W. Peng, F. Yao, J. Hu, Y. Liu, Z. Lu, Y. Liu, Z. Liu, K. Zeng, and G. Yang, "Renewable proteinbased monomer for thermosets: a case study on phthalonitrile resin", Green Chem., 20, 5158-5168 (2018). https://doi.org/10.1039/c8gc01824c