Gas Transport Behavior of Modified Carbon Nanotubes/Hydrogel Composite Membranes

개질된 탄소나노튜브/하이드로겔 복합막의 기체 투과 특성

  • Yoon, Hee Wook (Department of Energy Engineering, Hanyang University) ;
  • Lee, Hee Dae (Department of Energy Engineering, Hanyang University) ;
  • Park, Ho Bum (Department of Energy Engineering, Hanyang University)
  • 윤희욱 (한양대학교 에너지공학과) ;
  • 이희대 (한양대학교 에너지공학과) ;
  • 박호범 (한양대학교 에너지공학과)
  • Received : 2013.08.13
  • Accepted : 2013.10.06
  • Published : 2013.10.31

Abstract

Nanomaterials having large surface area, uniform dimensions or pores can be utilized in various membrane applications Amongst them, many studies have been focused on nanocarbon materials: graphene, graphene oxide and carbon nanotubes. Carbon nanotubes, one-dimensional structure, have excellent characteristics in thermal, chemical and mechanical strength properties. However, carbon nanotubes was mainly used to reinforce mechanical properties of polymer materials in previous applications. In contrast to previous studies, we focused on modified carbon nanotubes/polyethylene glycol diacrylate (PEGDA) composite membrane preparation for improvement of permeability and selectivity on gas separation.

나노 소재는 표면적이 매우 크고 크기나 기공이 균일하여 분리막에서 물질 전달통로나 특수한 기능성을 갖게 하는 소재로 이용이 가능하다. 그중에서도, 그래핀, 그래핀 옥사이드 및 탄소나노튜브와 같은 나노탄소 구조체에 대한 연구가 활발히 이루어지고 있다. 일차원 구조를 갖는 탄소나노튜브의 경우 우수한 열적, 화학적 및 기계적 성질을 가지고 있으나, 기존 연구에서는 주로 고분자와 혼합하여 기계적 물성을 강화하는 복합소재로서 사용됐으며, 응용분야의 한계를 가지고 있었다. 본 연구에서는 폴리 에틸렌 글리콜 다이아크릴레이트(PEGDA) 고분자 내에 개질된 탄소나노튜브를 혼합하여, 기체 분리막에서의 투과도 및 선택도의 변화를 관찰하였다.

Keywords

References

  1. J. H. Kim et. al., "Research trend of membrane technology for separation of carbon dioxide form flue gas", Membrane Journal, 12, 3 (2002).
  2. B. D. Freeman, "Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes", Macromolecules, 32, 375 (1999). https://doi.org/10.1021/ma9814548
  3. R. Mahajan and W. J. Koros, "Mixed matrix membrane materials with glassy polymers. Part 1", Polym. Eng. Sci., 42, 1420 (2002). https://doi.org/10.1002/pen.11041
  4. H. Cong et. al., "Carbon nanotube composite membranes of brominated poly (2,6-diphenyl-1,4-phenylene oxide) for gas separation", J. Memb. Sci., 294, 178 (2007). https://doi.org/10.1016/j.memsci.2007.02.035
  5. N. Pierard et. al., "Production of short carbon nanotubes with open tis by ball milling", Chem. Phys. Lett., 335 (2001).
  6. H. Hu et. al., "Nitric acid purification of single- walled carbon nanotubes", J. Phys. Chem. B., 107 (2003).
  7. K. J. Ziegler et. al., "Cutting single-walled carbon nanotubes", Nanotechnology, 16 (2005).
  8. M. A. Shannon et. al., "Science and technology for water purification in the coming decades", Nature, 452, 301 (2008). https://doi.org/10.1038/nature06599
  9. W. Z. Li et. al., Large-scale synthesis of aligned carbon nanotubes, Science, 274 (1996).
  10. M. Q. Tran, et. al., "Thermal oxidative cutting of multi-walled carbon nanotubes", Carbon, 45 (2007).
  11. M. S. Dresselhaus et. al., "Raman spectroscopy of carbon nanotubes", Phys. Rep., 409 (2005).
  12. W. Z. Li et. al., "Raman characterization of aligned carbon nanotubes produced by thermal decomposition of hydrocarbon vapor", Appl. Phys. Lett., 70 (1997).
  13. T. I. T. Okpalugo et. al., "High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs", Carbon, 43 (2005).
  14. S. J. Oh et. al., "Screening Effects in the Core- Level Spectra of Mixed-Valence Compounds", Phys. Rev. B., 26 (1982).
  15. E. P. Barrett et. al., "The Determination of Pore Volume and Area Distributions in Porous Substances .1. Computations from Nitrogen Isotherms", J. Am. Chem. Soc., 73 (1951).
  16. S. Inoue, et al., "Capillary condensation of N2 on multiwall carbon nanotubes", J. Phys. Chem. B., 102 (1998).
  17. Q. H. Yang et. al., "Adsorption and capillarity of nitrogen in aggregated multi-walled carbon nanotubes", Chem. Phys. Lett., 345 (2001).
  18. S. Kalakkunnath et. al., Viscoelastic characteristicsof U.V. polymerized poly(ethylene glycol diacrylate) networks with varyingextents of crosslinking, Jour. Polym. Sci. : Part B : Polym., Phys., 44 (2006)
  19. J. Crank and G. S. Park, "Diffusion in Polymers, 2nd ed.", Clarendon, Oxford (1968).
  20. H. Lin et. al., "The Effect of Cross-Linking on Gas Permeability in Cross-Linked Poly(Ethylene Glycol Diacrylate)", Macromolecules, 38, 8381 (2005). https://doi.org/10.1021/ma0510136