• Title/Summary/Keyword: polymer actuators

Search Result 112, Processing Time 0.021 seconds

Equivalent Beam and Equivalent Bimorph Beam Models for ionic Polymer-Metal Composite Actuators (등가 보 및 등가 바이모프 보를 이용한 IPMC 작동기 모델링)

  • 이상기;김광진;윤광준;박훈철
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1012-1016
    • /
    • 2004
  • In the present paper, equivalent beam and equivalent bimorph beam models for IPMC(ionic Polymer-Metal Composite) actuators are described. Physical properties of an IPMC, such as Young's modulus and electro-mechanical coupling coefficient. are determined from the rule of mixture, bimorph beam equations, and measured force-displacement data of a cantilevered IPMC actuator. By using a beam equation with estimated physical properties, actuation displacements of a cantilevered IPMC actuator was calculated and a good agreement between the computed tip displacements and the measured data was observed. Finite element analysis(FEA) combined with the estimated physical properties was used to reproduce the force-displacement relationship of an IPMC actuator. Results from the FEA agreed well with the measure data. The proposed models might be used for modeling of IPMC actuators with complicated shapes and boundary conditions.

Conductive Polymer Coated Electro-active Paper (EAPap) as Hybrid Actuator (전도성 폴리머와 셀룰로오스 종이를 결합한 EAPap 작동기)

  • Yun, Sung-Ryul;Kim, Jae-Hwan;Ounaies, Zoubeida;Deshpande, S.D.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.275-278
    • /
    • 2004
  • Electro-Active Paper (EAPap) is attractive for EAP actuator due to its merit in terms of light weight, dry condition, large displacement output, low actuation voltage and low power consumption. The EAPap is based on cellulose paper, and is shown to involve primarily transport of ions in response to an external electric field. This actuating mechanism is similar to conductive polymer based actuators. For performance improvement of EAPap, hybrid actuators are tried. The actuators based on cellulose paper attached conducting polypyrrole, polyaniline and single wall carbon nanotube/polyaniline(emeraldine base) have been achieved by Electro chemical deposition and mechanical deposition of the polymers onto cellulose paper.

  • PDF

Electro-Active Polymer Actuator by Employing Ionic Networking Membrane of Poly (styrene-alt-maleic anhydride)-Incorporated Poly (vinylidene fluoride) (이온성 망상구조막에 기반한 전기 활성 고분자 구동기)

  • Lu, Jun;Kim, Sang-Gyun;Lee, Sun-Woo;Oh, Il-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.714-717
    • /
    • 2007
  • In this study, a novel actuator was developed by employing the newly-synthesized ionic networking membrane (INM) of poly (styrene-alt-maleic anhydride) (PSMAn)-incorporated poly (vinylidene fluoride) (PVDF). Based on the same original membrane, various samples of INM actuator were prepared through different reduction times with the electroless-plating technique. The as-prepared INM actuators were tested in terms of surface resistance, platinum morphology, resonance frequency, tip displacement, current and blocked force, and their performance was compared to that of the widely-used traditional Nafion actuator. Scanning electron microscope (SEM) and transmission electron microscopy (TEM) revealed that much smaller and more uniform platinum particles were formed on the surfaces of the INM actuators as well as within their polymer matrix. Although excellent harmonic response was observed for the newly-developed INM actuators, this was found to be sensitive to the applied reduction times during the fabrication. The mechanical displacement of the INM actuator fabricated after optimum reduction times was much larger than that of its Nafion counterpart of comparable thickness under the stimulus of constant and alternating current voltage.

  • PDF

Study on Grasping Performance of Finger Exoskeleton Actuated by Electroactive Polymers (전기활성 고분자 구동 손가락 외골격 장치의 잡기 성능에 관한 연구)

  • Kim, Min Hyeok;Lee, Soo Jin;Jho, Jae Young;Kim, Dong Min;Rhee, Kyehan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.10
    • /
    • pp.873-878
    • /
    • 2015
  • A finger exoskeleton actuated by ionic polymer metal composite (IPMC) actuators has been developed. In order to evaluate performance of cylindrical grasping of finger exoskeletons, they were equipped with a hand dummy, which is composed of four fingers. The finger dummy has three joints that can be actuated by bending the IPMC actuators. A four finger grasping motion was analyzed using cameras, and cylindrical grasping motion was accomplished within two minutes after applying a 4 volt direct voltage to the IPMC actuators. A pull out test was also performed to evaluate the cylindrical grasping force of the finger exoskeletons actuated by the IPMC actuators. Each finger generated about 2 N of holding force when grasping the cylinder which had a diameter of 50 mm.

Biomimetic Actuator and Sensor for Robot Hand (로봇 손용 인체모방형 구동기 및 센서)

  • Kim, Baek-Chul;Chung, Jinah;Cho, Hanjoung;Shin, Seunghoon;Lee, Hyongsuk;Moon, Hyungpil;Choi, Hyouk Ryeol;Koo, Jachoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1497-1502
    • /
    • 2012
  • To manufacture a robot hand that essentially mimics the functions of a human hand, it is necessary to develop flexible actuators and sensors. In this study, we propose the design, manufacture, and performance verification of flexible actuators and sensors based on Electro Active Polymer (EAP). EAP is fabricated as a type of film, and it moves with changes in the voltage because of contraction and expansion in the polymer film. Furthermore, if a force is applied to an EAP film, its thickness and effective area change, and therefore, the capacitance also changes. By using this mechanism, we produce capacitive actuators and sensors. In this study, we propose an EAP-based capacitive sensor and evaluate its use as a robot hand sensor.

Preparation and Characterization of Electro-Active IPMC(Ion-exchange Polymer Metal Composite) Actuator (전기활성 IPMC(ion-exchange Polymer Metal Composite) 구동기 제조 및 구동특성 연구)

  • 이준호;이두성;김홍경;이영관;최혁렬;김훈모;전재욱;탁용석;남재도
    • Polymer(Korea)
    • /
    • v.26 no.1
    • /
    • pp.105-112
    • /
    • 2002
  • The low actuation voltage and quick bending response of IPMC(ion-exchange polymer metal composite) are considered attractive for the construction of various types of actuators. In this study, in order to develop a new type actuators by using the IPMC platinum electrode of IPMC are fabricated by using electroless impregnation-reduction method plating. As the platinum-plating times are increased, IPMC performance was improved in terms of bending displacement and force due to the enhanced surface conductivity. In addition, we investigated the basic actuation characteristics of resonance frequency and actuator length as well as the effect of water uptake and ion mobility. Using the classical laminate theory(CLT), a modeling methodology was developed to predict the deformation, bending moment, and residual stress distribution of anisotropic IPMC thin plates. In this modeling methodology, the internal stress evolved by the unsymmetric distribution of water inside IPMC was quantitatively calculated and subsequently the bending moment and the curvature were estimated for various geometry of IPMC actuator.

Development of Wing and Driving Mechanism for Flapping Micro Air Vehicle using Piezoelectirc and Electroactive Materials. (압전 특성을 이용한 날개짓 비행체의 날개 구동 장치 개발)

  • 이광락;박지형;김성주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.709-712
    • /
    • 2003
  • The existing technical limitation makes engineer imitate nature to solve engineering problems. Recently Micro Air Vehicle(MAV) imitating the mechanism of birds or insects is being developed. Especially Ultra Flite supported by DARPA is studying hummingbird aerodynamics to relate that information to MAV. To drive MAV bender piezoelectric(PZT) actuators are used due to the convinience of control and the small size. But the displacement of the PZT actuators are very small, and the wing driving mechanism which amplifies the stroke generated by the PZT actuators has constraints in design and manufacture because of the small dimension. In this paper a wing design concept and a efficient driving mechanism are proposed. Electroactive polymers(EAPs) are used as wing mechanism actuators. Using OpenGL the mechanisms are simulated graphically. Also a prototype actuator is being developed and verified by digital Mockup with CATIA. Basic kinematics of the mechanism is studied.

  • PDF

Synthetic bio-actuators and their applications in biomedicine

  • Neiman, Veronica J.;Varghese, Shyni
    • Smart Structures and Systems
    • /
    • v.7 no.3
    • /
    • pp.185-198
    • /
    • 2011
  • The promise of biomimetic smart structures that can function as sensors and actuators in biomedicine is enormous. Technological development in the field of stimuli-responsive shape memory polymers have opened up a new avenue of applications for polymer-based synthetic actuators. Such synthetic actuators mimic various attributes of living organisms including responsiveness to stimuli, shape memory, selectivity, motility, and organization. This article briefly reviews various stimuli-responsive shape memory polymers and their application as bioactuators. Although the technological advancements have prototyped the potential applications of these smart materials, their widespread commercialization depends on many factors such as sensitivity, versatility, moldability, robustness, and cost.

Performance Test of Nano-Composite Actuator Based on Fullerene Mixed Nafion (풀러렌이 혼입된 나피온기반 나노복합체 작동기의 성능평가)

  • Jung, Jung-Hwan;Lee, Il-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.374-375
    • /
    • 2008
  • In this study, the nano-composite actuator based on Fullerene and Nafion was newly developed to improve the electro active polymer actuators. The tensile test was employed to define the mechanical stiffness and strength of the nano-composite membrane. Also, the bending displacement of the Fullerene-Nafion based nano-composite actuator was investigated under DC and AC excitations with various magnitudes and frequencies. As a result, the new nano-composite actuator based on Fullerene-Nafion shows much larger deformation than the pure Nafion based actuator and solves the straightening back Problem of the previous electro active polymer actuators.

  • PDF