Browse > Article
http://dx.doi.org/10.12989/sss.2011.7.3.185

Synthetic bio-actuators and their applications in biomedicine  

Neiman, Veronica J. (Department of Bioengineering, University of California)
Varghese, Shyni (Department of Bioengineering, University of California)
Publication Information
Smart Structures and Systems / v.7, no.3, 2011 , pp. 185-198 More about this Journal
Abstract
The promise of biomimetic smart structures that can function as sensors and actuators in biomedicine is enormous. Technological development in the field of stimuli-responsive shape memory polymers have opened up a new avenue of applications for polymer-based synthetic actuators. Such synthetic actuators mimic various attributes of living organisms including responsiveness to stimuli, shape memory, selectivity, motility, and organization. This article briefly reviews various stimuli-responsive shape memory polymers and their application as bioactuators. Although the technological advancements have prototyped the potential applications of these smart materials, their widespread commercialization depends on many factors such as sensitivity, versatility, moldability, robustness, and cost.
Keywords
smart hydrogels; shape memory polymers; bioactuators; surgical tools; artificial cornea; glucose sensors; artificial muscles; drug delivery;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 Badiger, M.V., Lele, A.K., Bhalerao, V.S., Varghese, S. and Mashelkar, R.A. (1998), "Molecular tailoring of thermo-reversible copolymer gels: some new mechanistic insights", Chem. Phys., 109, 1175-1184.
2 Beebe, D.J., Moore, J.S., Bauer, J.M, Yu, Q., Liu, R.H., Devadoss, C. and Jo, B.H. (2000), "Functional hydrogel structures for autonomous flow control inside microfluidic channels", Nature, 404(6), 588-590.   DOI   ScienceOn
3 Bühler, W.J., Wiley, R.C. and Gilfrich, J.V. (1963), "Effect of low-temperature phase changes on mechanical properties of alloys near composition tini", J. Appl. Phys., 34(5), 1475.
4 Capadona, J.R., Shanmuganathan, K., Tyler, D.J., Rowan, S.J. and Weder, C. (2008), "Stimuliresponsive polymer nanocomposites inspired by the sea cucumber dermis", Science, 319, 1370-1373.   DOI   ScienceOn
5 Cartier, S., Horbett, T.A. and Ratner, B.D. (1995), "Glucose-sensitive membrane coated porous filters for control of hydraulic permeability and insulin delivery from a pressurized reservoir", J. Membrane Sci., 106(1-2), 17-24.   DOI
6 Chang, L.C. and Read, T.A. (1951), "Plastic deformation and diffusionless phase changes in metals-the goldcadmium beta-phase", Trans. AIME, 189(1), 47-52.
7 Dong, L., Agarwal, K.A, Bebbe, D.J. and Jiang, H. (2006), "Adaptive liquid microlenses activated by stimuliresponsive hydrogels", Nature, 442(3), 551-554.   DOI
8 Faravelli, L. and Marzi, A. (2010), "Coupling shape-memory alloy and embedded informatics toward a metallic self-healing material", Smart Struct. Syst., 6(9), 1041-1056.   DOI
9 Feinberg, A.W., Feigel, A., Shevkoplyas, S.S., Sheehy, S., Whitesides, G.M. and Parker, K.K. (2007), "Muscular thin films for building actuators and powering devices", Science, 317, 1366-1370.   DOI
10 Frimpong, R.A., Fraser, S. and Hilt, J.Z. (2006), "Synthesis and temperature response analysis of magnetichydrogel nanocomposites", J. Biomed. Mater. Res. A, 10(1002), 1-6.
11 Fuhrer, R. Athanassiou, E.K., Luechinger, N.A. and Stark, W.J. (2009), "Crosslinking metal nanoparticles into the polymer backbone of hydrogels enables preparation of soft, magnetic field-driven actuators with musclelike flexibility", Small, 5(3), 383-388.   DOI   ScienceOn
12 Gant, R.M., Hous, Y., Grunlan, M.A. and Cote, G.L. (2008), "Development of a self-cleaning sensor membrane for implantable biosensors", J. Biomed. Mater. Res. A, 90(3), 695-701.
13 Haraguchi, K. and Takehisa, T. (2002), "Nanocomposite hydrogels: A unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties", Adv. Mater., 14(16), 1120-1124.   DOI   ScienceOn
14 Haraguchi, K., Takehisa, T. and Fan, S. (2002), "Effects of clay content on the properties of nanocomposite hydrogels composed of poly(N-isopropylacrylamide) and clay", Macromolecules, 35(27), 10162-10171.   DOI   ScienceOn
15 Hirai, T. (2007), "Electrically active non-ionic artificial muscle", J. Intel Mat. Syst. Str., 18(2), 117-122.   DOI
16 Holtz, J.H. and Asher, S.A. (1997), "Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials", Nature, 389(23), 829-832.   DOI
17 Hu, Z., Zhang, X. and Li, Y. (1995), "Synthesis and application of modulated polymer gels", Science, 269, 524- 526.
18 Irie, M., Yoshifumi, M. and Tusuyoshi, T. (1993), "Stimuli-responsive polymers - chemical-induced reversible phase-separation of an aqueous-solution of poly(N-isopropylacrylamide) with pendent crown-ether groups", Polymer, 34(21), 4531-4535.   DOI   ScienceOn
19 Jin, X. and Hsieh, Y.L. (2005), "pH-responsive swelling behaviour of poly(vinyl alcohol)/poly(acrylic acid) bicomponent fibrous hydrogel membranes", Polymer, 46(14), 5149-5160.   DOI   ScienceOn
20 Kakugo, A., Sugimoto, S., Gong, J.P. and Osada, Y. (2002), "Gel machines constructed from chemically crosslinked actins and myosins", Adv. Mater., 14(16), 1124-1126.   DOI   ScienceOn
21 Kataoka, K., Miyazaki, H., Bunya, M., Okano, T. and Sakurai, Y. (1998), "Totally synthetic polymer gels responding to external glucose concentration: Their preparation and application to on-off regulation of insulin release", JACS, 120(48), 12694-12695.   DOI   ScienceOn
22 Kurisawa, M. and Yui, N. (1998), "Dual-stimuli-responsive drug release from interpenetrating polymer networkstructured hydrogels of gelatin and dextran", J. Control Release, 54(2), 191-200.   DOI   ScienceOn
23 Kwon, H.J., Shikinaka, K., Kakugo, A., Gong, J.P. and Osada, Y. (2007), "Gel biomachine based on muscle proteins", Polym. Bull., 58(1), 43-52.   DOI   ScienceOn
24 Lendlein, A. and Langer, R. (2002), "Biodegradable, elastic shape-memory polymers for potential biomedical applications", Science, 296(31), 1673-1676.   DOI
25 Lendlein, A., Jiang, H.Y., Junger, O. and Langer, R. (2005), "Light-induced shape-memory polymers", Nature, 434(7035), 879-882.   DOI   ScienceOn
26 Leong, T.G., Randall, C.L, Benson, B.R., Bassik, R., Stern, G.M. and Gracias, D.H. (2009), "Tetherless thermobiochemically actuated microgrippers", PNAS, 106(3), 703-708.   DOI   ScienceOn
27 Lim, H.L., Chuang, J.C., Tran, T., Aung, A., Arya, G. and Varghese, S. (2011), "Dynamic electromechanical hydrogel matrices for stem cell culture", Adv. Funct. Mater., 21(1), 55-63.   DOI   ScienceOn
28 Madden, J.D., Vandesteeg, N.A., Anquetil, P.A., Madden, P.G.A., Takshi, A., Pytel, R.Z., Lafontaine, S.R., Wieringa, P.A. and Hunter, I.W. (2004), "Artificial muscle technology: physical principles and naval prospects", IEEE J. Oceanic Eng., 29(3), 706-728.   DOI   ScienceOn
29 Miyata, T., Uragami, T. and Nakamae, K. (2002), "Biomolecule-sensitive hydrogels", Adv, Drug Deliver Rev., 54(1), 79-98.   DOI   ScienceOn
30 Osada, Y., Okuzaki, H. and Hori, H. (1992), "A polymer gel with electrically driven motility", Nature, 355(16), 242-244.   DOI
31 Osada, Y. and Matsuda, A. (1995), "Shape-memory in hydrogels", Nature, 376(6537), 219.
32 Plunkett, K.N. and Moore, J.S. (2004) "Patterned dual pH-responsive core-shell hydrogels with controllable swelling kinetics and volumes", Langmuir, 20(16), 6535-6537.   DOI   ScienceOn
33 Popovic, Z.D., Sprague, R.A. and Connell, G.A.N. (1988), "Technique for monolithic fabrication of microlens arrays", Appl. Optis., 27(7), 1281-1284.   DOI   ScienceOn
34 Rutten, W.L.C. (2002), "Selective Electrical Interfaces with the nervous system", Ann. Biomed. Eng., 4, 407- 452.   DOI   ScienceOn
35 Sakai, T. and Yoshida, R. (2004), "Self-oscillating nanogel particles", Langmuir, 20(4), 1036-1038.   DOI   ScienceOn
36 Sawahata, K., Hara, M., Yasunaga, H. and Osada, Y. (1990) "Electrically controlled drug delivery system using polyelectrolyte gels", J. Control. Release, 14(3), 253-262.   DOI   ScienceOn
37 Shen, A.Q., Hamlington, B.D., Knoblauch, M., Peters, W.S. and Pickard, W. F. (2006) "Forisome based biomimetic smart materials", Smart Struct. Syst., 2(3), 225-235.   DOI
38 Shin, M.K, Spinks, G.M, Shin, S.R., Kim, S.I. and Kim, S.J. (2009), "Nanocomposite hydrogel with high toughness for bioactuators", Adv. Mater., 21(17), 1712-1715.   DOI   ScienceOn
39 Song, G., Ma, N., Li, L., Penney, N., Barr, T., Lee, H.J. and Arnold, S. (2011), "Design and control of a proofofconcept active jet engine intake using shape memory alloy actuators", Smart Struct. Syst., 7(1), 1-13.   DOI
40 Tanaka, T. (1978), "Collapse of gels and the critical endpoint", Phys. Rev. Lett., 40, 820-823.   DOI
41 Toates, F.M. (1972), "Accommodation function of human eye", Physiol. Rev., 52, 828-863.   DOI
42 Tong, X., Zheng, J., Lu, Y., Zhang, Z. and Cheng, H. (2007), "Swelling and mechanical behaviors of carbon nanotube/poly(vinyl alcohol) hybrid hydrogels", Mater. Lett., 61(8-9), 1704-1706.   DOI   ScienceOn
43 Vakkalanka, S.K., Brazel, C.S. and Peppas, N.A. (1996) "Temperature-and pH-sensitive terpolymers for modulated delivery of streptokinase", J. Biomat. Sci - Polym. E., 8(2), 119-129.
44 Varghese, S., Lele, A.K., Srinivas, D., Sastry, M. and Mashelkar, R.A., (2001), "Novel macroscopic selforganization in polymer gels", Adv. Mater., 13(20), 1544-1548.   DOI   ScienceOn
45 Weissman, J.M., Sunkara, H.B., Tse, A.S. and Asher, S.A. (1996), "Thermally switchable periodicities and diffraction from mesoscopically ordered materials", Science, 274(5289), 959-960.   DOI   ScienceOn
46 Wu, J., Su, Z.G. and Ma, G.H. (2006), "A thermo-and pH-sensitive hydrogel composed of quaternized chitosan / glycerophosphate", Int. J. Pharm., 315(1-2), 1-11.   DOI   ScienceOn
47 Xulu, P.M., Filipcsei, G. and Zrinyi, M. (2000), "Preparation and responsive properties of magnetically soft poly(N-isopropylacrylamide) gels", Macromolecules, 33(5), 1716-1719.   DOI   ScienceOn
48 Yang, R., Wang, W.J. and Soper, S.A., (2005), "Out-of-plane microlens array fabricated using ultraviolet lithography", Appl. Phys. Lett., 86, 16110.
49 Yin, X., Hoffman, A.S. and Stayton, P.S. (2006), "Poly(N-isopropylacrylamide-co-propylacrylic acid) copolymers that respond sharply to temperature and pH", Biomacromolecules, 7(5), 1381-1385.   DOI   ScienceOn
50 Yoshida, R. (2005), "Design of functional polymer gels and their application to biomimetic materials", Curr. Org. Chem., 9(16), 1617-1641.   DOI   ScienceOn