DOI QR코드

DOI QR Code

Synthetic bio-actuators and their applications in biomedicine

  • Neiman, Veronica J. (Department of Bioengineering, University of California) ;
  • Varghese, Shyni (Department of Bioengineering, University of California)
  • Received : 2010.02.15
  • Accepted : 2010.10.19
  • Published : 2011.03.25

Abstract

The promise of biomimetic smart structures that can function as sensors and actuators in biomedicine is enormous. Technological development in the field of stimuli-responsive shape memory polymers have opened up a new avenue of applications for polymer-based synthetic actuators. Such synthetic actuators mimic various attributes of living organisms including responsiveness to stimuli, shape memory, selectivity, motility, and organization. This article briefly reviews various stimuli-responsive shape memory polymers and their application as bioactuators. Although the technological advancements have prototyped the potential applications of these smart materials, their widespread commercialization depends on many factors such as sensitivity, versatility, moldability, robustness, and cost.

Keywords

References

  1. Badiger, M.V., Lele, A.K., Bhalerao, V.S., Varghese, S. and Mashelkar, R.A. (1998), "Molecular tailoring of thermo-reversible copolymer gels: some new mechanistic insights", Chem. Phys., 109, 1175-1184.
  2. Beebe, D.J., Moore, J.S., Bauer, J.M, Yu, Q., Liu, R.H., Devadoss, C. and Jo, B.H. (2000), "Functional hydrogel structures for autonomous flow control inside microfluidic channels", Nature, 404(6), 588-590. https://doi.org/10.1038/35007047
  3. Bühler, W.J., Wiley, R.C. and Gilfrich, J.V. (1963), "Effect of low-temperature phase changes on mechanical properties of alloys near composition tini", J. Appl. Phys., 34(5), 1475.
  4. Capadona, J.R., Shanmuganathan, K., Tyler, D.J., Rowan, S.J. and Weder, C. (2008), "Stimuliresponsive polymer nanocomposites inspired by the sea cucumber dermis", Science, 319, 1370-1373. https://doi.org/10.1126/science.1153307
  5. Cartier, S., Horbett, T.A. and Ratner, B.D. (1995), "Glucose-sensitive membrane coated porous filters for control of hydraulic permeability and insulin delivery from a pressurized reservoir", J. Membrane Sci., 106(1-2), 17-24. https://doi.org/10.1016/0376-7388(95)00073-L
  6. Chang, L.C. and Read, T.A. (1951), "Plastic deformation and diffusionless phase changes in metals-the goldcadmium beta-phase", Trans. AIME, 189(1), 47-52.
  7. Dong, L., Agarwal, K.A, Bebbe, D.J. and Jiang, H. (2006), "Adaptive liquid microlenses activated by stimuliresponsive hydrogels", Nature, 442(3), 551-554. https://doi.org/10.1038/nature05024
  8. Faravelli, L. and Marzi, A. (2010), "Coupling shape-memory alloy and embedded informatics toward a metallic self-healing material", Smart Struct. Syst., 6(9), 1041-1056. https://doi.org/10.12989/sss.2010.6.9.1041
  9. Feinberg, A.W., Feigel, A., Shevkoplyas, S.S., Sheehy, S., Whitesides, G.M. and Parker, K.K. (2007), "Muscular thin films for building actuators and powering devices", Science, 317, 1366-1370. https://doi.org/10.1126/science.1146885
  10. Frimpong, R.A., Fraser, S. and Hilt, J.Z. (2006), "Synthesis and temperature response analysis of magnetichydrogel nanocomposites", J. Biomed. Mater. Res. A, 10(1002), 1-6.
  11. Fuhrer, R. Athanassiou, E.K., Luechinger, N.A. and Stark, W.J. (2009), "Crosslinking metal nanoparticles into the polymer backbone of hydrogels enables preparation of soft, magnetic field-driven actuators with musclelike flexibility", Small, 5(3), 383-388. https://doi.org/10.1002/smll.200801091
  12. Gant, R.M., Hous, Y., Grunlan, M.A. and Cote, G.L. (2008), "Development of a self-cleaning sensor membrane for implantable biosensors", J. Biomed. Mater. Res. A, 90(3), 695-701.
  13. Haraguchi, K. and Takehisa, T. (2002), "Nanocomposite hydrogels: A unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties", Adv. Mater., 14(16), 1120-1124. https://doi.org/10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9
  14. Haraguchi, K., Takehisa, T. and Fan, S. (2002), "Effects of clay content on the properties of nanocomposite hydrogels composed of poly(N-isopropylacrylamide) and clay", Macromolecules, 35(27), 10162-10171. https://doi.org/10.1021/ma021301r
  15. Hirai, T. (2007), "Electrically active non-ionic artificial muscle", J. Intel Mat. Syst. Str., 18(2), 117-122. https://doi.org/10.1177/1045389X06063344
  16. Holtz, J.H. and Asher, S.A. (1997), "Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials", Nature, 389(23), 829-832. https://doi.org/10.1038/39834
  17. Hu, Z., Zhang, X. and Li, Y. (1995), "Synthesis and application of modulated polymer gels", Science, 269, 524- 526.
  18. Irie, M., Yoshifumi, M. and Tusuyoshi, T. (1993), "Stimuli-responsive polymers - chemical-induced reversible phase-separation of an aqueous-solution of poly(N-isopropylacrylamide) with pendent crown-ether groups", Polymer, 34(21), 4531-4535. https://doi.org/10.1016/0032-3861(93)90160-C
  19. Jin, X. and Hsieh, Y.L. (2005), "pH-responsive swelling behaviour of poly(vinyl alcohol)/poly(acrylic acid) bicomponent fibrous hydrogel membranes", Polymer, 46(14), 5149-5160. https://doi.org/10.1016/j.polymer.2005.04.066
  20. Kakugo, A., Sugimoto, S., Gong, J.P. and Osada, Y. (2002), "Gel machines constructed from chemically crosslinked actins and myosins", Adv. Mater., 14(16), 1124-1126. https://doi.org/10.1002/1521-4095(20020816)14:16<1124::AID-ADMA1124>3.0.CO;2-M
  21. Kataoka, K., Miyazaki, H., Bunya, M., Okano, T. and Sakurai, Y. (1998), "Totally synthetic polymer gels responding to external glucose concentration: Their preparation and application to on-off regulation of insulin release", JACS, 120(48), 12694-12695. https://doi.org/10.1021/ja982975d
  22. Kurisawa, M. and Yui, N. (1998), "Dual-stimuli-responsive drug release from interpenetrating polymer networkstructured hydrogels of gelatin and dextran", J. Control Release, 54(2), 191-200. https://doi.org/10.1016/S0168-3659(97)00247-2
  23. Kwon, H.J., Shikinaka, K., Kakugo, A., Gong, J.P. and Osada, Y. (2007), "Gel biomachine based on muscle proteins", Polym. Bull., 58(1), 43-52. https://doi.org/10.1007/s00289-006-0613-4
  24. Lendlein, A. and Langer, R. (2002), "Biodegradable, elastic shape-memory polymers for potential biomedical applications", Science, 296(31), 1673-1676. https://doi.org/10.1126/science.1066102
  25. Lendlein, A., Jiang, H.Y., Junger, O. and Langer, R. (2005), "Light-induced shape-memory polymers", Nature, 434(7035), 879-882. https://doi.org/10.1038/nature03496
  26. Leong, T.G., Randall, C.L, Benson, B.R., Bassik, R., Stern, G.M. and Gracias, D.H. (2009), "Tetherless thermobiochemically actuated microgrippers", PNAS, 106(3), 703-708. https://doi.org/10.1073/pnas.0807698106
  27. Lim, H.L., Chuang, J.C., Tran, T., Aung, A., Arya, G. and Varghese, S. (2011), "Dynamic electromechanical hydrogel matrices for stem cell culture", Adv. Funct. Mater., 21(1), 55-63. https://doi.org/10.1002/adfm.201001519
  28. Madden, J.D., Vandesteeg, N.A., Anquetil, P.A., Madden, P.G.A., Takshi, A., Pytel, R.Z., Lafontaine, S.R., Wieringa, P.A. and Hunter, I.W. (2004), "Artificial muscle technology: physical principles and naval prospects", IEEE J. Oceanic Eng., 29(3), 706-728. https://doi.org/10.1109/JOE.2004.833135
  29. Miyata, T., Uragami, T. and Nakamae, K. (2002), "Biomolecule-sensitive hydrogels", Adv, Drug Deliver Rev., 54(1), 79-98. https://doi.org/10.1016/S0169-409X(01)00241-1
  30. Osada, Y., Okuzaki, H. and Hori, H. (1992), "A polymer gel with electrically driven motility", Nature, 355(16), 242-244. https://doi.org/10.1038/355242a0
  31. Osada, Y. and Matsuda, A. (1995), "Shape-memory in hydrogels", Nature, 376(6537), 219.
  32. Plunkett, K.N. and Moore, J.S. (2004) "Patterned dual pH-responsive core-shell hydrogels with controllable swelling kinetics and volumes", Langmuir, 20(16), 6535-6537. https://doi.org/10.1021/la049453y
  33. Popovic, Z.D., Sprague, R.A. and Connell, G.A.N. (1988), "Technique for monolithic fabrication of microlens arrays", Appl. Optis., 27(7), 1281-1284. https://doi.org/10.1364/AO.27.001281
  34. Rutten, W.L.C. (2002), "Selective Electrical Interfaces with the nervous system", Ann. Biomed. Eng., 4, 407- 452. https://doi.org/10.1146/annurev.bioeng.4.020702.153427
  35. Sakai, T. and Yoshida, R. (2004), "Self-oscillating nanogel particles", Langmuir, 20(4), 1036-1038. https://doi.org/10.1021/la035833s
  36. Sawahata, K., Hara, M., Yasunaga, H. and Osada, Y. (1990) "Electrically controlled drug delivery system using polyelectrolyte gels", J. Control. Release, 14(3), 253-262. https://doi.org/10.1016/0168-3659(90)90165-P
  37. Shen, A.Q., Hamlington, B.D., Knoblauch, M., Peters, W.S. and Pickard, W. F. (2006) "Forisome based biomimetic smart materials", Smart Struct. Syst., 2(3), 225-235. https://doi.org/10.12989/sss.2006.2.3.225
  38. Shin, M.K, Spinks, G.M, Shin, S.R., Kim, S.I. and Kim, S.J. (2009), "Nanocomposite hydrogel with high toughness for bioactuators", Adv. Mater., 21(17), 1712-1715. https://doi.org/10.1002/adma.200802205
  39. Song, G., Ma, N., Li, L., Penney, N., Barr, T., Lee, H.J. and Arnold, S. (2011), "Design and control of a proofofconcept active jet engine intake using shape memory alloy actuators", Smart Struct. Syst., 7(1), 1-13. https://doi.org/10.12989/sss.2011.7.1.001
  40. Tanaka, T. (1978), "Collapse of gels and the critical endpoint", Phys. Rev. Lett., 40, 820-823. https://doi.org/10.1103/PhysRevLett.40.820
  41. Toates, F.M. (1972), "Accommodation function of human eye", Physiol. Rev., 52, 828-863. https://doi.org/10.1152/physrev.1972.52.4.828
  42. Tong, X., Zheng, J., Lu, Y., Zhang, Z. and Cheng, H. (2007), "Swelling and mechanical behaviors of carbon nanotube/poly(vinyl alcohol) hybrid hydrogels", Mater. Lett., 61(8-9), 1704-1706. https://doi.org/10.1016/j.matlet.2006.07.115
  43. Vakkalanka, S.K., Brazel, C.S. and Peppas, N.A. (1996) "Temperature-and pH-sensitive terpolymers for modulated delivery of streptokinase", J. Biomat. Sci - Polym. E., 8(2), 119-129.
  44. Varghese, S., Lele, A.K., Srinivas, D., Sastry, M. and Mashelkar, R.A., (2001), "Novel macroscopic selforganization in polymer gels", Adv. Mater., 13(20), 1544-1548. https://doi.org/10.1002/1521-4095(200110)13:20<1544::AID-ADMA1544>3.0.CO;2-F
  45. Weissman, J.M., Sunkara, H.B., Tse, A.S. and Asher, S.A. (1996), "Thermally switchable periodicities and diffraction from mesoscopically ordered materials", Science, 274(5289), 959-960. https://doi.org/10.1126/science.274.5289.959
  46. Wu, J., Su, Z.G. and Ma, G.H. (2006), "A thermo-and pH-sensitive hydrogel composed of quaternized chitosan / glycerophosphate", Int. J. Pharm., 315(1-2), 1-11. https://doi.org/10.1016/j.ijpharm.2006.01.045
  47. Xulu, P.M., Filipcsei, G. and Zrinyi, M. (2000), "Preparation and responsive properties of magnetically soft poly(N-isopropylacrylamide) gels", Macromolecules, 33(5), 1716-1719. https://doi.org/10.1021/ma990967r
  48. Yang, R., Wang, W.J. and Soper, S.A., (2005), "Out-of-plane microlens array fabricated using ultraviolet lithography", Appl. Phys. Lett., 86, 16110.
  49. Yin, X., Hoffman, A.S. and Stayton, P.S. (2006), "Poly(N-isopropylacrylamide-co-propylacrylic acid) copolymers that respond sharply to temperature and pH", Biomacromolecules, 7(5), 1381-1385. https://doi.org/10.1021/bm0507812
  50. Yoshida, R. (2005), "Design of functional polymer gels and their application to biomimetic materials", Curr. Org. Chem., 9(16), 1617-1641. https://doi.org/10.2174/138527205774610949

Cited by

  1. Superparamagnetic Nanocomposites Based on the Dispersion of Oleic Acid-Stabilized Magnetite Nanoparticles in a Diglycidylether of Bisphenol A-Based Epoxy Matrix: Magnetic Hyperthermia and Shape Memory vol.116, pp.24, 2012, https://doi.org/10.1021/jp3026754
  2. Shape Memory Silk Protein Sponges for Minimally Invasive Tissue Regeneration vol.6, pp.2, 2017, https://doi.org/10.1002/adhm.201600762
  3. Variable stiffness biological and bio-inspired materials vol.24, pp.5, 2013, https://doi.org/10.1177/1045389X12461722
  4. The role of mechanics in biological and bio-inspired systems vol.6, pp.1, 2015, https://doi.org/10.1038/ncomms8418
  5. Hydrogels: a versatile tool with a myriad of biomedical and research applications for the skin vol.7, pp.4, 2012, https://doi.org/10.1586/edm.12.28
  6. Synergistic human-agent methods for deriving effective search strategies: the case of nanoscale design vol.26, pp.2, 2015, https://doi.org/10.1007/s00163-015-0190-3
  7. Improving human understanding and design of complex multi-level systems with animation and parametric relationship supports vol.1, 2015, https://doi.org/10.1017/dsj.2015.3
  8. A review of stimuli-responsive shape memory polymer composites vol.54, pp.9, 2013, https://doi.org/10.1016/j.polymer.2013.02.023
  9. Design of Complex Biologically Based Nanoscale Systems Using Multi-Agent Simulations and Structure–Behavior–Function Representations vol.135, pp.6, 2013, https://doi.org/10.1115/1.4024227
  10. Methodology: Bridging Science and Design for Bio-Based Product Development vol.138, pp.8, 2016, https://doi.org/10.1115/1.4033751