• Title/Summary/Keyword: polymannuronate

Search Result 20, Processing Time 0.03 seconds

Precipitation of cations by alginate, polyguluronate and polymannuronate

  • Jeong, Dae-Yeong;Seo, Hyeong-Pil;Lee, Dong-Su;Byeon, Jae-Hyeong;Lee, Jin-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.495-499
    • /
    • 2000
  • The relative affinity of seaweed alginate, polyguluronate and polymannuronate for cations was investigated. The cations used in this study were $Ca^{2+}$, $Cd^{2+}$, $Co^{2+}$, $Cu^{2+}$, $Fe^{3+}$, $Hg^{2+}$, $Mg^{2+}$, $Mn^{2+}$, $Pb^{2+}$, $Rb^{1+}$, $Sr^{2+}$ and $Zn^{2+}$. The ability of cations to precipitated polymers was determined as the relative affinity of seaweed alginate, polyguluronate and polymannuronate for cations. The relative affinity of polymers for cations in order are as follow: Seaweed alginate: $Fe^{3+}$,$Cu^{2+}$,$Cd^{2+}>Pb^{2+}>Co^{2+}$,$Zn^{2+}>Ca^{2+}>Sr^{2+}$,$Rb^{1+}>Mn^{2+}>Mg^{2+}$,$Hg^{2+}$ Ployguluronate:$Fe^{3+}$,$Cu^{2+}$,$Cd^{2+}>Ca^{2+}$,$Co^{2+}$,$Pb^{2+}>Sr^{2+}$,$Rb^{1+}$,$Zn^{2+}>Hg^{2+}$,$Mn^{2+}>Mg^{2+}$ Polymannuronate:$Fe^{3+}$,$Cd^{2+}$,$Cu^{2+}>Ca^{2+}$,$Pb^{2+}>Zn^{2+}$,$Rb^{1+}$$Sr^{2+}$,$Hg^{2+}>Co^{2+}>Mn^{2+}>Mg^{2+}$

  • PDF

Biosorption of Metal Ions by Seaweed Alginate, Polyguluronate, and Polymannuronate (알긴산, 폴리글루론산 및 폴리만뉴론산에 의한 금속이온의 흡착)

  • Jung, Dae-Young;Son, Chang-Woo;Kim, Sung-Koo;Kim, Yi-Joon;Chung, Chung-Han;Lee, Jin-Woo
    • Journal of Life Science
    • /
    • v.19 no.5
    • /
    • pp.553-560
    • /
    • 2009
  • Based on $P_{1/2}$ values, relative affinities of alginate, polyguluronate, and polymannuronate for metal ions are, in order, as follows; 1) seaweed alginate: $Cu^{2+}$ > $Cd^{2+}$ > $Pb^{2+}$ > $Fe^{3+}$ >> $Zn^{2+}$ > $Sr^{2+}$ > $Ca^{2+}$ > $Co^{2+}$ >> $Cr^{6+}$ > $Mn^{2+}$ >> $Hg^{2+}$, $Mg^{2+}$, $Rb^+$, 2) polyguluronate: $Cd^{2+}$ > $Cu^{2+}$ > $Pb^{2+}$ > $Fe^{3+}$ >> $Ca^{2+}$ > $Sr^{2+}$, $Zn^{2+}$, $Co^{2+}$ >> $Mn^{2+}$ > $Cr^{6+}$ >> $Hg^{2+}$, $Mg^{2+}$, $Rb^+$, and 3) polymannuronate: $Cd^{2+}$, $Cu^{2+}$ > $Fe^{3+}$ > $Pb^{2+}$ > $Ca^{2+}$ > $Zn^{2+}$ > $Sr^{2+}$ > $Co^{2+}$ > $Cr^{6+}$ >> $Mn^{2+}$ >> $Hg^{2+}$, $Mg^{2+}$, $Rb^+$. Amounts of the metal ions, $Cd^{2+}$, $Cu^{2+}$, $Fe^{3+}$, $Pb^{2+}$, and $Zn^{2+}$, bound to 1 g of seaweed alginate, were measured as $363.5{\pm}45.0$, $226.3{\pm}9.2$, $1,299.4{\pm}$81.3, 500.7${\pm}$27.7, and 165.9${\pm}$11.4 mg, respectively. Amounts of the metal ions, $Cd^{2+}$, $Cu^{2+}$, $Fe^{3+}$, $Pb^{2+}$, and $Zn^{2+}$, bound to 1g of polyguluronate, were 354.5${\pm}$26.5, 177.6${\pm}$8.7, 1,288.6${\pm}$60.1, 424.0${\pm}$7.4, and 140.2${\pm}$28.5 mg, respectively, whereas those bound to 1 g of polymannuronate were 329.0${\pm}$10.3, 206.9${\pm}$1.9, 1,635.6${\pm}$11.1, 419.8${\pm}$12.6, and 251.0${\pm}$49.1 mg, respectively. Due to its higher solubility than alginate and higher affinity for metal ions than polyguluronate, polymannuronate can be used for bioremediation or biosorption of toxic and/or noble metal ions.

A Simple Method for Isolation of Polymannuronate and Polyguluronate from Alginate Hydrolyzed by Organic Acids (유기산에 의해 가수분해된 알긴산에서 폴리만뉴론산과 폴리글루론산을 분리하는 간단한 방법)

  • Lee, Dong-Soo;Shin, Myung-Kyo;Pyeun, Jae-Hyeung;Lee, Jin-Woo
    • Journal of Life Science
    • /
    • v.19 no.1
    • /
    • pp.34-39
    • /
    • 2009
  • Alginate with a MW of 1,283 kDa was hydrolyzed with 0.4 M organic acids at $100^{\circ}C$ for 3 hr. Molecular weights of alginates hydrolyzed with organic acids ranged from 7.5 to 53.2 kDa. There was no significant difference in the molar ratio of mannuronate to guluronate in alginates hydrolyzed with organic acids. Acetic add was found to be the most effective organic acid for hydrolysis of alginate. The MW of alginate decreased with increasing concentration and reaction time with acetic acid as a hydrolyzing agent. The correlations between the MW of hydrolyzed alginate and concentration of acetic acid as well as reaction time with 0.4 M acetic acid were plotted and the relevant equations obtained in this study. Polymannuronate and polyguluronate were isolated by pH adjustment of alginate hydrolyzed with 0.4 M acetic add. The molar percentages of mannuronate in polymannuronates isolated from alginate hydrolyzed with 0.4 M acetic acid at $100^{\circ}C$ were increasing in proportional to the reaction time such as 75% for 1 hr, 90% for 3 hr, and 98% for 5 hr of reaction time.

섭취방법에 의한 polymannuronate의 생리효과 비교

  • 김인혜;이동수;남택정
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2003.05a
    • /
    • pp.107-108
    • /
    • 2003
  • 갈조류 알긴산은 혈청 지질 조성의 개선효과 등 기능성과 관련하여 많은 보고들이 있다. 흰쥐에 대한 급이 실험에서 알긴산이 혈청 및 간장 지질의 콜레스테롤 농도를 현저히 감소 시킨다고 하였고, 건조 다시마 분말을 흰쥐에 급이한 결과 체중과 사료의 소화율이 감소하고 소장, 대장 및 맹장 등의 소화기관의 증대 및 체중과 사료의 소화율 감소에도 영향을 미치는 것으로 알려져 있다. (중략)

  • PDF

Cloning and Expression of Alginate Lyase from a Marine Bacterium, Streptomyces sp. M3 (해양미생물 Streptomyces sp. M3로부터 alginate lyase의 클로닝 및 발현)

  • Kim, Hee-Sook
    • Journal of Life Science
    • /
    • v.19 no.11
    • /
    • pp.1522-1528
    • /
    • 2009
  • A marine bacterium was isolated from brown seaweeds for its ability to degrade alginate. Analysis of 16S ribosomal DNA sequence revealed that the strain belongs to Streptomyces like strain ALG-5 which was reported previously. New alginate lyase gene of Streptomyces sp. M3 was cloned by using PCR with the specific primers designed from homologous nucleotide sequences. The consensus sequences of N-terminal YXRSELREM and C-terminal YFKAGXYXQ were conserved in the M3 alginate lyase amino acid sequences. The homology model for the M3 alginate lyase showed a characteristic structure of $\beta$-jelly roll fold main domain like alyPG from Corynebacterium sp. ALY-1. The homogenate of the recombinant E. coli with the alginate lyase gene showed more degrading activity for polyguluronate block than polymannuronate block. The results from the multiple alignments and the homology modeling elucidated in the M3 alginate lyase can be classified into family PL-7.

Homology Modeling and Characterization of Oligoalginate Lyase from the Alginolytic Marine Bacterium Sphingomonas sp. Strain MJ-3 (알긴산을 분해하는 해양미생물인 Sphingomonas sp. MJ-3 균주의 올리고알긴산 분해효소의 상동성 모델링 및 특성연구)

  • Kim, Hee Sook
    • Journal of Life Science
    • /
    • v.25 no.2
    • /
    • pp.121-129
    • /
    • 2015
  • Alginates are found in marine brown seaweeds and in extracellular biofilms secreted by some bacteria. Previously, we reported an oligoalginate lyase from Sphingomonas sp. MJ-3 (MJ3-Oal) that had an exolytic activity and protein sequence homology with endolytic polymannuronate (polyM) lyase in the N-terminal region. In this study, the MJ3-Oal was tested for both exolytic and endolytic activity by homology modeling using the crystal structure of Alg17c from Saccharophagus degradans 2-40T. The tyrosine residue at the $426^{th}$ position, which possibly formed a hydrogen bond with the substrate, was mutated to phenylalanine. The FPLC profiles showed that MJ3-Oal degraded alginate quickly to monomers as a final product through the oligmers, whereas the Tyr426Phe mutant showed only exolytic alginate lyase activity. $^1H$-NMR spectra also showed that MJ3-Oal degraded the endoglycosidic bond of polyM and polyMG (polymannuronate-guluronate) blocks. These results indicate that oligoalginate lyase from Sphingomonas sp. MJ-3 probably catalyzes the degradation of both exo- and endo-glycosidic bonds of alginate.

The Effects of Polymannuronates on Leptin in 3T3-L1 Adipocytes (3T3-L1 지방세포 내의 Leptin에 미치는 Polymannuronates의 영향)

  • KIM In-Hye;NAM Teak-Jeong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.37 no.5
    • /
    • pp.372-379
    • /
    • 2004
  • This study evaluated polymanuronates on the differentiation of 3T3-L1 adipocytes. Polymannuronates increased glucose utilization and reduced the accumulation of triglycerides in the cells. The differentiation showed the same results as Oil red O staining. Also, the polymannuronates inhibited GPDH activity as a result of the restrained adipogenesis promotion process in 3T3-L1 adipocytes. The addition of the differentiation promotion factor to 3T3-L1 promoted the differentiation of adipocytes and increased the expression of the leptin level. However the addition of polymannuronates inhibited differentiation of adipocytes and the leptin secretion level in cells by checking the leptin protein level in the culture media. As well as this, it also inhibited the transcriptional mechanism and leptin mRNA expression. These results suggest that the addition of polymannuronates improves the physiological function of 3T3-L1 cells by reducing the accumulation of triglyceride and GPDH activity, and the repressing expression of leptin at a molecular level.