Browse > Article
http://dx.doi.org/10.5352/JLS.2009.19.5.553

Biosorption of Metal Ions by Seaweed Alginate, Polyguluronate, and Polymannuronate  

Jung, Dae-Young (Korea Bio-Solution Co.)
Son, Chang-Woo (Korea Bio-Solution Co.)
Kim, Sung-Koo (Department of Biotechnology & Bioengineering, Graduate School of Pukyung National University)
Kim, Yi-Joon (BK21 Bio-Silver Project of Dong-A University)
Chung, Chung-Han (BK21 Bio-Silver Project of Dong-A University)
Lee, Jin-Woo (BK21 Bio-Silver Project of Dong-A University)
Publication Information
Journal of Life Science / v.19, no.5, 2009 , pp. 553-560 More about this Journal
Abstract
Based on $P_{1/2}$ values, relative affinities of alginate, polyguluronate, and polymannuronate for metal ions are, in order, as follows; 1) seaweed alginate: $Cu^{2+}$ > $Cd^{2+}$ > $Pb^{2+}$ > $Fe^{3+}$ >> $Zn^{2+}$ > $Sr^{2+}$ > $Ca^{2+}$ > $Co^{2+}$ >> $Cr^{6+}$ > $Mn^{2+}$ >> $Hg^{2+}$, $Mg^{2+}$, $Rb^+$, 2) polyguluronate: $Cd^{2+}$ > $Cu^{2+}$ > $Pb^{2+}$ > $Fe^{3+}$ >> $Ca^{2+}$ > $Sr^{2+}$, $Zn^{2+}$, $Co^{2+}$ >> $Mn^{2+}$ > $Cr^{6+}$ >> $Hg^{2+}$, $Mg^{2+}$, $Rb^+$, and 3) polymannuronate: $Cd^{2+}$, $Cu^{2+}$ > $Fe^{3+}$ > $Pb^{2+}$ > $Ca^{2+}$ > $Zn^{2+}$ > $Sr^{2+}$ > $Co^{2+}$ > $Cr^{6+}$ >> $Mn^{2+}$ >> $Hg^{2+}$, $Mg^{2+}$, $Rb^+$. Amounts of the metal ions, $Cd^{2+}$, $Cu^{2+}$, $Fe^{3+}$, $Pb^{2+}$, and $Zn^{2+}$, bound to 1 g of seaweed alginate, were measured as $363.5{\pm}45.0$, $226.3{\pm}9.2$, $1,299.4{\pm}$81.3, 500.7${\pm}$27.7, and 165.9${\pm}$11.4 mg, respectively. Amounts of the metal ions, $Cd^{2+}$, $Cu^{2+}$, $Fe^{3+}$, $Pb^{2+}$, and $Zn^{2+}$, bound to 1g of polyguluronate, were 354.5${\pm}$26.5, 177.6${\pm}$8.7, 1,288.6${\pm}$60.1, 424.0${\pm}$7.4, and 140.2${\pm}$28.5 mg, respectively, whereas those bound to 1 g of polymannuronate were 329.0${\pm}$10.3, 206.9${\pm}$1.9, 1,635.6${\pm}$11.1, 419.8${\pm}$12.6, and 251.0${\pm}$49.1 mg, respectively. Due to its higher solubility than alginate and higher affinity for metal ions than polyguluronate, polymannuronate can be used for bioremediation or biosorption of toxic and/or noble metal ions.
Keywords
Alginate; polyguluronate; polymannuronate; biosorption; metal ions;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Lin, T. and W. Z. Hassid. 1966. Pathway of alginic acid synthesis in the marine brown alga, Fucus gardneri silva. J. Biol. Chem. 241, 5284-5297   DOI   ScienceOn
2 Maachi, R., M. Abousseoud, and T. Chaabane. 2001. Kinetics of biodegradation of petroleum by Pseudomonas sp. Desalination 139, 367   DOI   ScienceOn
3 Morris, E. R., D. A. Rees, and D. Thorn. 1978. Chiroptical and stoichiomtric evidence of specific primary dimerization process in alginate gelation. Carbohydr. Res. 66, 145-154   DOI   ScienceOn
4 Morris, E. R. and D. A. Rees. 1980. Competitative inhibition of interchain interactions in polysaccharide systems. J. Mol. Biol. 138, 363-374   DOI
5 Penman, A. and G. R. Sanderson. 1972. A method for the determination of uronic acid sequence in alginates. Carbohydr. Res. 25, 273-282   DOI   ScienceOn
6 Rees, D. A. 1972. Shapely polysaccharides. Biochem. J. 126, 257-273
7 Smidsrod, O. and A. Haug. 1968. Dependence upon uronic acid compositon of some ion-exchange properties of alginates. Acta Chem. Scand. 26, 2563-2566   DOI
8 Smidsrod, O. 1974. Molecular basis for some physical properties of alginates in the gel state. Farad. Discuss. Chem. Soc. 57, 263-274   DOI
9 Suh, J. H., M. K. Suh, and Y. H. Lee. 2006. Biosorption model and factors for removing lead to Aureobasidium pullulans being imperfect fungus. J. Life Sci. 16, 877-883   DOI
10 Volesky, B. 1987. Biosorbents for metal recovery. Tibtech. 5, 96-101   DOI   ScienceOn
11 Voragen, A. G. J., H. A. Schols, J. A. De Vries, and W. Pilnik. 1982. High-performance liquid chromatographic analysis of uronic acids and oligogalacturonic acids. J. Chromat. 244, 327-336   DOI   ScienceOn
12 Haug, A. 1961. The affinity of some divalent metals to different type of alginates. Acta Chem. Scand. 15, 1794-1795   DOI
13 Haug, A. and B. Larsen. 1962. Quantitative determination of the uronic acid composition of alginates. Acta Chem. Scand. 16, 1908-1918   DOI
14 Haug, A. and O Smidsrod. 1965. Fractionation of alginates by precipitation with calcium and magnesium ions. Acta Chem. Scand. 19, 1221-1226   DOI
15 Holan, Z. R., B. Volesky, and I. Prasetyo. 1993. Biosorption of cadmium by biomass of marine algae. Bioechnol. Bioeng. 41, 819-825   DOI
16 Jang, L. K., W. R. Brand, M. Resong, W. Mainieri, and G. G.. Geesey. 1990. Feasibility of using alginate to absorb dissolved copper. Water Res. 24, 889-897   DOI   ScienceOn
17 Jang, L. K., S. I. Lopez, S. L. Eastman, and P. Pryfogle. 1991. Recovery of copper and cobalt by biopolymer gels. Biotechnol. Bioeng. 37, 266-273   DOI
18 Lee, D. S., H. R. Kim, and J. H. Pyeun. 1998. Effect of low-molecularization on rheological properties of alginate. J. Kor. Fish. Soc. 31, 82-89
19 Lee, D. S., M. K. Shin, J. H. Pyen, and J. W. Lee. 2009. A simple method for isolation of polymannuronate and polyguluronate from alginate hydrolyzed by organic acids. J. Life Sci. 19, 34-39   DOI
20 Lee, J. W. 1999. Electron microscopic observation of calcium-acetylated seaweed alginate gel. J. Life Sci. 9, 45-49
21 Cho, K. J., Y. J. Choi, S. C. Ahn, M. Y. Baik, and B. Y. Kim. 2008. Encapsulation with oyster hydrolysate using alginate. J. Life Sci. 18, 708-714
22 Lee, J. W., R. D. Ashby, and D. F. Day. 1996. Role of acetylation on metal induced precipitation of alginates. Carbohydr. Polymers 29, 337-345   DOI   ScienceOn
23 Lee, M. G., K. T. Park, and S. K. Kam. 1998. Biosorption of copper by immobilized biomass of marine brown algae (Phaeophyta) Hizikia fusiformis. J. Life Sci. 8, 208-215
24 Darnall, D. W., B. Greene, M. T. Henzl, T. M. Hosea, R. A. McPherson, J. Sneddon, and M. D. Alexander. 1986. Selective recovery of gold and other metal ions from an algal biomass. Environ. Sci. Technol. 20, 206-208   DOI   ScienceOn
25 Dubois, M., K. A. Gillus, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetric method for sugars and related substances. Anal. Chem. 28, 350-356   DOI
26 Greene, B., M. T. Henzl, J. M. Hosea, and D. W. Darnall. 1986. Elimination of biocarbonate interference in the binding of U(VI) in mill-waters to freeze-dried Chlorella vugaris. Biotechnol. Bioeng. 28, 764-767   DOI   ScienceOn
27 Gacesa, P., A Squire, and P. J. Winterburn. 1983. The determination of the uronic acid composition of alginates by anion-exchange liquid chromatography. Carbohydr. Res. 118, 1-8   DOI   ScienceOn