P34 ## The ability of cations to precipitate alginate, polyguluronate and polymannuronate Dae Young Jung¹, Hyung Phil Seo¹, Chang Woo Son¹, Young Su Cho¹, Dong Soo Lee², and Jin Woo Lee^{1*} ¹Division of Biotechnology, Faculty of Natural Resources and Life Science, Dong-A University. Pusan, 604-714, Korea and ²Research Center of Biotechnology & Bioengineering, KBP Co., LTD., Shihung, Kyung-gi 429-450, Korea *Corresponding author(Fax: 82-51-200-7593; E-mail; jwlee@mail.donga.ac.kr) The relative ability of cations to precipitate alginate, polyguluronate and polymannuronate was examined. The cations used in this study were Ca²⁺, Cd²⁺, Co²⁺, Cu²⁺, Cr⁶⁺, Fe³⁺, Mg²⁺, Mn²⁺, Pb²⁺, Rb¹⁺, Sr²⁺ and Zn²⁺. These cations were classified into three groups, depending on their ability to precipitate polymers: 1) those cations having a relatively high precipitating ability of alginate, polyguluronate and polymannuronate; Ca²⁺, Cd², Cu²⁺, Fe³⁺ and Pb²⁺, 2) those cations having a relatively low precipitating ability of alginate polyguluronate and polymannuronate; Rb¹⁺, Mg²⁺ and 3) Cr⁶⁺ having a relatively high precipitating ability of polymannuronate but not alginate and polyguluronate. These results obtained by this study will be used for bioremedation or biosorption of toxic or noble cations by biopolymers.