• Title/Summary/Keyword: polyketide

Search Result 131, Processing Time 0.028 seconds

A New Protein Factor in the Product Formation of Non-Reducing Fungal Polyketide Synthase with a C-Terminus Reductive Domain

  • Balakrishnan, Bijinu;Chandran, Ramya;Park, Si-Hyung;Kwon, Hyung-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.10
    • /
    • pp.1648-1652
    • /
    • 2015
  • Azaphilone polyketides are synthesized by iterative non-reducing fungal polyketide synthases (NR-fPKSs) with a C-terminus reductive domain (-R). Several azaphilone biosynthetic gene clusters contain a putative serine hydrolase gene; the Monascus azaphilone pigment (MAzP) gene cluster harbors mppD. The MAzP productivity was significantly reduced by a knockout of mppD, and the MAzP NR-fPKS-R gene (MpPKS5) generated its product in yeast only when co-expressed with mppD. Site-directed mutations of mppD for conserved Ser/Asp/His residues abolished the product formation from the MpPKS5/mppD co-expression. MppD and its homologs are thus proposed as a new protein factor involved in the product formation of NR-fPKS-R.

Site-Directed Mutagenesis on Putative Macrolactone Ring Size Determinant in the Hybrid Pikromycin-Tylosin Polyketide Synthase

  • Jung, Won-Seok;Kim, Eung-Soo;Kang, Han-Young;Choi, Cha-Yong;Sherman, David-H.;Yoon, Yeo-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.5
    • /
    • pp.823-827
    • /
    • 2003
  • Streptomyces venezuelae ATCC 15439 is notable in its ability to produce two distinct groups of macrolactones. It has been reported that the generation of two macrolactone structures results from alternative expression of pikromycin (Pik) polyketide synthase (PKS). It was previously reported that the hybrid pikromycin-tylosin PKS can also produce two different macrolactones but its mechanistic basis remains unclear. In order to address this question, a series of site-directed mutagenesis of tentative alternative ribosome binding site and translation start codons in tylGV were performed. The results suggest that macrolactone ring size is not determined by the alternative expression of TylGV but through other mechanism(s) involving direct interaction between the PikAIII and TE domain or skipping of the final chain elongation step. This provides new insight into the mechanism of macrolactone ring size determination in hybrid PKS as well as an opportunity to develop novel termination activities for combinatorial biosynthesis.

Alternative Production of Avermectin Components in Streptomyces avermitilis by Gene Replacement

  • Yong Joon-Hyoung;Byeon Woo-Hyeon
    • Journal of Microbiology
    • /
    • v.43 no.3
    • /
    • pp.277-284
    • /
    • 2005
  • The avermectins are composed of eight compounds, which exhibit structural differences at three positions. A family of four closely-related major components, A1a, A2a, B1a and B2a, has been identified. Of these components, B1a exhibits the most potent antihelminthic activity. The coexistence of the '1' components and '2' components has been accounted for by the defective dehydratase of aveAI module 2, which appears to be responsible for C22-23 dehydration. Therefore, we have attempted to replace the dehydratase of aveAI module 2 with the functional dehydratase from the erythromycin eryAII module 4, via homologous recombination. Erythromycin polyketide synthetase should contain the sole dehydratase domain, thus generating a saturated chain at the C6-7 of erythromycin. We constructed replacement plasmids with PCR products, by using primers which had been derived from the sequences of avermectin aveAI and the erythromycin eryAII biosynthetic gene cluster. If the original dehydratase of Streptomyces avermitilis were exchanged with the corresponding erythromycin gene located on the replacement plasmid, it would be expected to result in the formation of precursors which contain alkene at C22-23, formed by the dehydratase of erythromycin module 4, and further processed by avermectin polyketide synthase. Consequently, the resulting recombinant strain JW3105, which harbors the dehydratase gene derived from erythromycin, was shown to produce only C22,23-unsaturated avermectin compounds. Our research indicates that the desired compound may be produced via polyketide gene replacement.

Development of PCR-Based Screening Methods for Macrolide Type Polyketides in Actinomycetes

  • Hyun, Chang-Gu;Suh, Joo-Won
    • Journal of Applied Biological Chemistry
    • /
    • v.42 no.3
    • /
    • pp.119-124
    • /
    • 1999
  • About two thirds of the naturally occurring antibiotics have been discovered from actinomycetes. Therefore, the probability of discovering further new antibiotics from actinomycetes is declining as many known metabolites are isolated repeatedly. However, various efforts leave been made in order to enhance the probability of discovering novel compounds. In the present study, we have developed new screening strategies based on the antibiotic biosynthetic pathway, and the genetic information, utilizing polymerase chain reaction. We have selected macrolide type polyketides. In order to divide the ansamycin group antibotic of macrolide type polyketides, we have selected 3-amino-5-hydroxybenzoic acid (AHBA) moiety which contains a biosynthetically unique structural element in the group as a target molecules. Oligonucleotide primers were designed to amplify DNA fragments of macrolide type polyketide synthase and AHBA synthase genes from fourteen actinomycetes species. This method was successfully applied to all three of the known macrolide type polyketide produccing actinomycetes tested. In addition, it also identified the presence of potential macrolide type polyketide producing genes from seven actinomycetes that were known to produce none of macrolide type polyketides, and AHBA biosynthetic genes in one actinomycetes. This technique is potentially useful for the screening of new antibiotices and cloning of their biosynthetic genes.

  • PDF

Cloning and Characterization of Actinorhodin Biosynthetic Gene Clusters from Streptomyces lividans TK24

  • Park, Kie-In
    • Animal cells and systems
    • /
    • v.6 no.4
    • /
    • pp.305-309
    • /
    • 2002
  • Actinorhodin antibiotics produced by Streptomyces lividans TK24 are blue pigments with a weak antibiotic activity, derived from one acetyl-CoA and 15 malonyl-CoA units via a typical ployketide pathway. In an attempt to clone polyketide biosynthetic genes of S. lividans TK24, hybridizing fragments in the genomic DNA of S. lividans TK24 were detected by use of acn and act III polyketide synthase gene probes. Since typical aromatic polyketide bio-synthetic gene clusters are roughly 22-34 Kb long, we constructed in E. coli XL-Blue MR using the Streptomyces-E. coli bifunctional shuttle cosmid vector (pojn46). Then, about 5,000 individual E. coii colonies were thor-oughly screened with acrl-ORFI and actIII probes. From these cosmid libra-ries, 12 positive clones were identified. Restriction analysis and southern hybridization showed two polyketide biosynthetic gene clusters in this organism. These cosmid clones can be transformed into Streptomyces parvulus 12434 for expression test that identify product of actinorhodin biosynthetic genes by heterologous expression. Thus, heterologous expres-sion of a derivative compound of a actinorhodin biosynthetic intermediate was obtained in pKE2430. Expression of these compounds by the trans-formants was detected by photodiode array HPLC analysis of crude extracts.

Cloning, Sequencing, and Characterization of the Pradimicin Biosynthetic Gene Cluster of Actinomadura hibisca P157-2

  • Kim, Byung-Chul;Lee, Jung-Min;Ahn, Jong-Seog;Kim, Beom-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.830-839
    • /
    • 2007
  • Pradimicins are potent antifungal antibiotics having an unusual dihydrobenzo[$\alpha$]naphthacenequinone aglycone substituted with D-alanine and sugars. Pradimicins are polyketide antibiotics produced by Actinomadura hibisca P157-2. The gene cluster involved in the biosynthesis of pradimicins was cloned and sequenced. The pradimicin gene cluster was localized to a 39-kb DNA segment and its involvement in the biosynthesis of pradimicin was proven by gene inactivation of prmA and prmB(ketosynthases $\alpha\;and\;\beta$). The pradimicin gene cluster consists of 28 open reading frames(ORFs), encoding a type II polyketide synthase(PKS), the enzymes involved in sugar biosynthesis and tailoring enzymes as well as two resistance proteins. The deduced proteins showed strong similarities to the previously validated gene clusters of angucyclic polyketides such as rubromycin, griseorhodin, and fredericamycin. From the pradimicin gene cluster, prmP3 encoding a component of the acetyl-CoA carboxylase complex was disrupted. The production levels of pradimicins of the resulting mutants decreased to 62% of the level produced by the wild-type strain, which indicate that the acetyl-CoA carboxylase gene would have a significant role in the production of pradimicins through supplying the extender unit precursor, malonyl-CoA.

Possible Negative Effect of Pigmentation on Biosynthesis of Polyketide Mycotoxin Zearalenone in Gibberella zeae

  • Jung Sun-Yo;Kim Jung-Eun;Yun Sung-Hwan;Lee Yin-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.9
    • /
    • pp.1392-1398
    • /
    • 2006
  • We investigated a possible coordination between the biosyntheses of two polyketides in the cereal head blight fungus Gibberella zeae, zearalenone (ZEA) and aurofusarin (AUR), which are catalyzed by the polyketide synthases (PKS) PKS4/PKS13 and PKS12, respectively. To determine if the production of one polyketide influences that of the other, we used four different transgenic strains of G zeae; three were deficient for either ZEA or AUR or both, and one was an AUR-overproducing strain. The mycelia of both the wild-type and ${\Delta}PKS4$ strain deficient for ZEA produced AUR normally, whereas the mycelia of both the ${\Delta}PKS12$ and ${\Delta}PKS4::{\Delta}PKS12$ strain showed no AUR accumulation. All the examined deletion strains caused necrotic spots on the surface of com kernels and were found to produce the nonpolyketide mycotoxins trichothecenes to the same amount as the wild-type strain. In contrast, the AUR-deficient ${\Delta}PKS12$ strains produced greater quantities of ZEA and its derivatives than the wild-type progenitor on both a rice substrate and a liquid medium; the AUR-overproducing strain did not produce ZEA on either medium. Furthermore, the expression of both PKS4 and PKS13 was induced earlier in the ${\Delta}PKS12$ strains than in the wild-type strain, and there was no difference in the transcription of PKS12 between the two strains. Therefore, these results indicate that the ZEA biosynthetic pathway is negatively regulated by the accumulation of another polyketide (AUR) in G zeae.

Detection of Novel Polyketide Synthase Genes in Sorangium cellulosum Isolated in Korea (국내에서 분리한 Sorangium cellulosum의 신규 Polyketide Synthase 유전자 검출)

  • Youn, Jin-Kwon;Kim, Do-Hee;Lee, Han-Bit;Lee, Kye-Won;Cho, Kyung-Yun
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.2
    • /
    • pp.136-143
    • /
    • 2010
  • DNA fragments encoding the ketosynthase (KS) domain of polyketide synthase (PKS) genes were amplified using polymerase chain reaction (PCR) from 9 strains of Sorangium cellulosum isolated in Korea, cloned into a plasmid vector and sequenced. A total of 83 cloned DNA fragments were analyzed, and similar fragments were excluded, leaving 43 independent DNA fragments encoding the KS domains. The predicted amino acid sequences of 32 fragments were 70%-100% identical to the amino acid sequences of already known PKS genes, while the remaining 11 fragments were $\leq$67% or less identical to the known sequences, suggesting that these genes are novel PKS genes.

Cytochrome P450 and the glycosyltransferase genes are necessary for product release from epipyrone polyketide synthase in Epicoccum nigrum

  • Choi, Eun Ha;Park, Si-Hyung;Kwon, Hyung-Jin
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.3
    • /
    • pp.225-236
    • /
    • 2021
  • The epipyrone (EPN) biosynthetic gene cluster of Epicoccum nigrum is composed of epnC, epnB, and epnA, which encode cytochrome P450 oxidase, glycosyltransferase, and highly reducing polyketide synthase, respectively. Gene inactivation mutants for epnA, epnB, and epnC were previously generated, and it was found that all of them were incapable of producing EPN and any of its related compounds. It was also reported that epnB inactivation abolished epnA transcription, generating ΔepnAB. This study shows that the introduction of native epnC readily restored EPN production in ΔepnC, suggesting that epnC is essential for polyketide release from EpnA and implies that EpnC works during the polyketide chain assembly of EpnA. Introduction of epnC promoter-epnA restored EPN production in ΔepnA. The ΔepnB genotype was prepared by introducing the epnA expression vector into ΔepnAB, and it was found that the resulting recombinant strain did not produce any EPN-related compounds. A canonical epnB inactivation strain was also generated by deleting its 5'-end. At the deletion point, an Aspergllus nidulans gpdA promoter was inserted to ensure the transcription of epnA, which is located downstream of epnB. Examination of the metabolite profile of the resulting ΔepnB mutant via LC-mass spectrometry verified that no EPN-related compound was produced in this strain. This substantiates that C-glycosylation by EpnB is a prerequisite for the release of EpnA-tethered product. In conclusion, it is proposed that cytochrome P450 oxidase and glycosyltransferase work in concert with polyketide synthase to generate EPN without the occurrence of any free intermediates.

Identification of 1,3,6,8-Tetrahydroxynaphthalene Synthase (ThnA) from Nocardia sp. CS682

  • Purna Bahadur Poudel;Rubin Thapa Magar;Adzemye Fovennso Bridget;Jae Kyung Sohng
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.7
    • /
    • pp.949-954
    • /
    • 2023
  • Type III polyketide synthase (PKS) found in bacteria is known as 1,3,6,8-tetrahydroxynaphthalene synthase (THNS). Microbial type III PKSs synthesize various compounds that possess crucial biological functions and significant pharmaceutical activities. Based on our sequence analysis, we have identified a putative type III polyketide synthase from Nocardia sp. CS682 was named as ThnA. The role of ThnA, in Nocardia sp. CS682 during the biosynthesis of 1,3,6,8 tetrahydroxynaphthalene(THN), which is the key intermediate of 1-(α-L-(2-O-methyl)-6-deoxymannopyranosyloxy)-3,6,8-trimethoxynaphthalene (IBR-3) was characterized. ThnA utilized five molecules of malonyl-CoA as a starter substrate to generate the polyketide 1,3,6,8-tetrahydroxynaphthalene, which could spontaneously be oxidized to the red flaviolin compound 2,5,7-trihydroxy-1,4-naphthoquinone. The amino acid sequence alignment of ThnA revealed similarities with a previously identified type III PKS and identified Cys138, Phe188, His270, and Asn303 as four highly conserved active site amino acid residues, as found in other known polyketide synthases. In this study, we report the heterologous expression of the type III polyketide synthase thnA in S. lividans TK24 and the identification of THN production in a mutant strain. We also compared the transcription level of thnA in S. lividans TK24 and S. lividans pIBR25-thnA and found that thnA was only transcribed in the mutant.