1 |
Peng J, Jiao J, Li J, Wang W, Gu Q, Zhu T, Li D (2012) Pyronepolyene C-glucosides with NF-κB inhibitory and anti-influenza A viral (H1N1) activities from the sponge-associated fungus Epicoccum sp. JJY40. Bioorg Med Chem Lett 22: 3188-3190. doi: 10.1016/j.bmcl.2012.03.044
DOI
|
2 |
Shu YZ, Ye Q, Li H, Kadow KF, Hussain RA, Huang S, Gustavson DR, Lowe SE, Chang LP, Pirnik DM, Kodukula K (1997) Orevactaene, a novel binding inhibitor of HIV-1 rev protein to Rev response element (RRE) from Epicoccum nigrum WC47880. Bioorg Med Chem Lett 7: 2295-2298. doi: 10.1016/S0960-894X(97)00407-1
DOI
|
3 |
Kimura J, Furui M, Kanda M, Sugiyama M (2002) Telomerase inhibitor. Japan Patent 2002047281A Feb 2002
|
4 |
Hufendiek P (2017) Enzyme-inhibitory secondary metabolites and their exudation in the marine-derived fungus Epicoccum nigrum link. Dissertation, Rheinische Friedrich-Wilhelms-Universitat Bonn
|
5 |
Preindl J, Schulthoff S, Wirtz C, Lingnau J, Furstner A (2017) Polyunsaturated C-glycosidic 4-hydroxy-2-pyrone derivatives: Total synthesis shows that putative orevactaene is likely identical with epipyrone A. Angew Chem Int Ed Engl 56: 7525-7530. doi: 10.1002/anie.201702189
DOI
|
6 |
Hertweck C (2009) The biosynthetic logic of polyketide diversity. Angew Chem Int Ed Engl 48: 4688-4716. doi: 10.1002/anie.200806121
DOI
|
7 |
Cox RJ (2007) Polyketides, proteins and genes in fungi: programmed nano-machines begin to reveal their secrets. Org Biomol Chem 5: 2010-2026. doi: 10.1039/b704420h
DOI
|
8 |
Chooi YH, Tang Y (2012) Navigating the fungal polyketide chemical space: from genes to molecules. J Org Chem 77: 9933-9953. doi: 10.1021/jo301592k
DOI
|
9 |
Lim YJ, Choi EH, Park SH, Kwon HJ (2020) Genetic localization of the orevactaene/epipyrone biosynthetic gene cluster in Epicoccum nigrum. Bioorg Med Chem Lett 30: 127242 doi:10.1016/j.bmcl.2020.127242
DOI
|
10 |
de Groot MJ, Bundock P, Hooykaas PJ, Beijersbergen AG (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol. 16: 839-842. doi: 10.1038/nbt0998-839
DOI
|
11 |
Greule A, Stok JE, Voss JD, Cryle M (2018). Unrivalled diversity: the many roles and reactions of bacterial cytochromes P450 in secondary metabolism. Nat Prod Rep 35: 757-791
DOI
|
12 |
Hopwood DA, Sherman DH (1990) Molecular genetics of polyketides and its comparison to fatty acid biosynthesis. Ann Rev Genet 24: 37-62. doi: 10.1146/annurev.ge.24.120190.000345
DOI
|
13 |
Staunton J, Weissman KJ (2001) Polyketide biosynthesis: a millennium review. Nat Prod Rep 18: 380-416. doi: doi.org/10.1039/A909079G
DOI
|
14 |
Kasahara K, Fujii I, Oikawa H, Ebizuka (2006) Expression of Alternaria solani PKSF generates a set of complex reduced-type polyketides with different carbon-lengths and cyclization. ChemBioChem 7: 920-924. doi: 10.1002/cbic.200600034
DOI
|
15 |
Hashimoto M, Nonaka T, Fujii I (2014) Fungal type III polyketide synthases. Nat Prod Rep 31: 1306-1317. doi: 10.1039/c4np00096j
DOI
|
16 |
van Ginkel R, Selwood AI, Wilkins AL, Ford S, Calder C (2012) Antimicrobial compositions. US Patent 20120108526A1 May 2012
|
17 |
Fujii I, Yoshida N, Shimomaki S, Oikawa H, Ebizuka Y (2005) An iterative type I polyketide synthase PKSN catalyzes synthesis of the decaketide alternapyrone with regio-specific octa-methylation. Chem Biol 12: 1301-1309. doi: 10.1016/j.chembiol.2005.09.015
DOI
|
18 |
Gowda M, Li H, Wang GL (2007) Robust analysis of 5'-transcript ends: a high-throughput protocol for characterization of sequence diversity of transcription start sites. Nat Protoc 2: 1622-1632. doi: 10.1038/nprot.2007.242
DOI
|
19 |
Michielse CB, Hooykaas PJ, van den Hondel CA, Ram AF (2008) Agrobacterium-mediated transformation of the filamentous fungus Aspergillus awamori. Nat Protoc 3: 1671-1678. doi: 10.1038/nprot.2008.154
DOI
|