Browse > Article
http://dx.doi.org/10.4014/jmb.1504.04086

A New Protein Factor in the Product Formation of Non-Reducing Fungal Polyketide Synthase with a C-Terminus Reductive Domain  

Balakrishnan, Bijinu (Division of Bioscience and Bioinformatics, Myongji University)
Chandran, Ramya (Division of Bioscience and Bioinformatics, Myongji University)
Park, Si-Hyung (Department of Oriental Medicine Resources and Institute for Traditional Korean Medicine Industry, Mokpo National University)
Kwon, Hyung-Jin (Division of Bioscience and Bioinformatics, Myongji University)
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.10, 2015 , pp. 1648-1652 More about this Journal
Abstract
Azaphilone polyketides are synthesized by iterative non-reducing fungal polyketide synthases (NR-fPKSs) with a C-terminus reductive domain (-R). Several azaphilone biosynthetic gene clusters contain a putative serine hydrolase gene; the Monascus azaphilone pigment (MAzP) gene cluster harbors mppD. The MAzP productivity was significantly reduced by a knockout of mppD, and the MAzP NR-fPKS-R gene (MpPKS5) generated its product in yeast only when co-expressed with mppD. Site-directed mutations of mppD for conserved Ser/Asp/His residues abolished the product formation from the MpPKS5/mppD co-expression. MppD and its homologs are thus proposed as a new protein factor involved in the product formation of NR-fPKS-R.
Keywords
Monascus pigment; azaphilone polyketide; non-reducing fungal polyketide synthase; MppD; Ser/Asp/His catalytic triad;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Balakrishnan B, Chen CC, Pan TM, Kwon HJ. 2014. Mpp7 controls regioselective Knoevenagel condensation during the biosynthesis of Monascus azaphilone pigments. Tetrahedron Lett. 55: 1640-1643   DOI
2 Bailey AM, Cox RJ, Harley K, Lazarus CM, Simpson TJ, Skellam E. 2007. Characterisation of 3-methylorcinaldehyde synthase (MOS) in Acremonium strictum: first observation of a reductive release mechanism during polyketide biosynthesis. Chem. Commun. 39: 4053-4055.   DOI
3 Balakrishnan B, Karki S, Chiu SH, Kim HJ, Suh JW, Nam B, et al. 2013. Genetic localization and in vivo characterization of a Monascus azaphilone pigment biosynthetic gene cluster. Appl. Microbiol. Biotechnol. 97: 6337-6345.   DOI
4 Balakrishnan B, Kim HJ, Suh JW, Chen CC, Liu KH, Park SH, et al. 2014. Monascus azaphilone pigment biosynthesis employs a dedicated fatty acid synthase for short chain fatty acyl moieties. J. Kor. Soc. Appl. Biol. Chem. 57: 191-196.   DOI
5 Bijinu B, Suh JW, Park SH, Kwon HJ. 2014. Delineating Monascus azaphilone pigment biosynthesis: oxidoreductive modifications determine the ring cyclization pattern in azaphilone biosynthesis. RSC Adv. 4: 59405-59408.   DOI
6 Cox RJ. 2007. Polyketides, proteins and genes in fungi: programmed nano-machines begin to reveal their secrets. Org. Biomol. Chem. 5: 2010-2026.   DOI
7 Chiang YM, Szewczyk E, Davidson AD, Keller N, Oakley BR, Wang CC. 2009. A gene cluster containing two fungal polyketide synthases encodes the biosynthetic pathway for a polyketide, asperfuranone, in Aspergillus nidulans. J. Am. Chem. Soc. 131: 2965-2970.   DOI
8 Chiang YM, Oakley BR, Keller NP, Wang CC. 2010. Unraveling polyketide synthesis in members of the genus Aspergillus. Appl. Microbiol. Biotechnol. 86: 1719-1736.   DOI
9 Chiang YM, Oakley CE, Ahuja M, Entwistle R, Schultz A, Chang SL, et al. 2013. An efficient system for heterologous expression of secondary metabolite genes in Aspergillus nidulans. J. Am. Chem. Soc. 135: 7720-7731.   DOI
10 Crawford JM, Korman TP, Labonte JW, Vagstad AL, Hill EA, Kamari-Bidkorpeh O, et al. 2009. Structural basis for biosynthetic programming of fungal aromatic polyketide cyclization. Nature 461: 1139-1143.   DOI
11 Fisch KM, Skellam E, Ivison D, Cox RJ, Bailey AM, Lazarus CM, et al. 2010. Catalytic role of the C-terminal domains of a fungal non-reducing polyketide synthase. Chem. Commun. 46: 5331-5333.   DOI
12 Gao JM, Yang SX, Qin JC. 2013. Azaphilones: chemistry and biology. Chem. Rev. 113: 4755-4811.   DOI
13 Heathcote ML, Staunton J, Leadlay PF. 2001. Role of type II thioesterases: evidence for removal of short acyl chains produced by aberrant decarboxylation of chain extender units. Chem. Biol. 8: 207-220.   DOI
14 Jensen K, Niederkrüger H, Zimmermann K, Vagstad AL, Moldenhauer J, Brendel N, et al. 2012. Polyketide proofreading by an acyltransferase-like enzyme. Chem. Biol. 19: 329-339.   DOI
15 Hopwood DA, Sherman DH. 1990. Molecular genetics of polyketides and its comparison to fatty acid biosynthesis. Annu. Rev. Genet. 24: 37-62.   DOI
16 Shimizu T, Kinoshita H, Ishihara S, Sakai K, Nagai S, Nihira T. 2005. Polyketide synthase gene responsible for citrinin biosynthesis in Monascus purpureus. Appl. Environ. Microbiol. 71: 3453-3457.   DOI
17 Ishiuchi K, Nakazawa T, Ookuma T, Sugimoto S, Sato M, Tsunematsu Y, et al. 2012. Establishing a new methodology for genome mining and biosynthesis of polyketides and peptides through yeast molecular genetics. Chembiochem 13: 846-854.   DOI
18 Li YP, Pan YF, Zou LH, Xu Y, Huang ZB, He QH. 2013. Lower citrinin production by gene disruption of ctnB involved in citrinin biosynthesis in Monascus aurantiacus Li AS3.4384. J. Agric. Food Chem. 61: 7397-7402.   DOI
19 Staunton J, Weissman KJ. 2001. Polyketide biosynthesis: a millennium review. Nat. Prod. Rep. 18: 380-416.   DOI
20 Quevillon-Cheruel S, Leulliot N, Graille M, Hervouet N, Coste F, Bénédetti H, et al. 2005. Crystal structure of yeast YHR049W/FSH1, a member of the serine hydrolase family. Protein Sci. 14: 1350-1356.   DOI
21 Winter JM, Sato M, Sugimoto S, Chiou G, Garg NK, Tang Y, et al. 2012. Identification and characterization of the chaetoviridin and chaetomugilin gene cluster in Chaetomium globosum reveal dual functions of an iterative highly-reducing polyketide synthase. J. Am. Chem. Soc. 134: 17900-17903.   DOI
22 Zabala AO, Xu W, Chooi YH, Tang Y. 2012. Characterization of a silent azaphilone gene cluster from Aspergillus niger ATCC 1015 reveals a hydroxylation-mediated pyran-ring formation. Chem. Biol. 19: 1049-1059.   DOI