Browse > Article

Alternative Production of Avermectin Components in Streptomyces avermitilis by Gene Replacement  

Yong Joon-Hyoung (Department of Biofood, Hallym College)
Byeon Woo-Hyeon (Division of Biological Sciences, College of Natural Sciences, Kangwon National University)
Publication Information
Journal of Microbiology / v.43, no.3, 2005 , pp. 277-284 More about this Journal
Abstract
The avermectins are composed of eight compounds, which exhibit structural differences at three positions. A family of four closely-related major components, A1a, A2a, B1a and B2a, has been identified. Of these components, B1a exhibits the most potent antihelminthic activity. The coexistence of the '1' components and '2' components has been accounted for by the defective dehydratase of aveAI module 2, which appears to be responsible for C22-23 dehydration. Therefore, we have attempted to replace the dehydratase of aveAI module 2 with the functional dehydratase from the erythromycin eryAII module 4, via homologous recombination. Erythromycin polyketide synthetase should contain the sole dehydratase domain, thus generating a saturated chain at the C6-7 of erythromycin. We constructed replacement plasmids with PCR products, by using primers which had been derived from the sequences of avermectin aveAI and the erythromycin eryAII biosynthetic gene cluster. If the original dehydratase of Streptomyces avermitilis were exchanged with the corresponding erythromycin gene located on the replacement plasmid, it would be expected to result in the formation of precursors which contain alkene at C22-23, formed by the dehydratase of erythromycin module 4, and further processed by avermectin polyketide synthase. Consequently, the resulting recombinant strain JW3105, which harbors the dehydratase gene derived from erythromycin, was shown to produce only C22,23-unsaturated avermectin compounds. Our research indicates that the desired compound may be produced via polyketide gene replacement.
Keywords
Streptomyces avermitilis; avermectin; polyketide; gene replacement; dehydratase;
Citations & Related Records

Times Cited By Web Of Science : 10  (Related Records In Web of Science)
Times Cited By SCOPUS : 10
연도 인용수 순위
1 Anzai, H., Y. Kumada, O. Hara, T. Murakaml, R. Itoh, E. Takano, S. Imai, A. Satoh, and K. Nagaoka. 1988. Replacement of Streptomyces hygroscopicus genomic segments with in vitro altered DNA sequences. J. Antibiotics. 12, 226-233
2 Chakraburtty, R., J. White, E. Takano, and M. J. Bibb. 1996. Cloning, characterization and disruption of a(p)ppGpp synthase gene(relA) of Streptomyces coelicolor A3(2). Mol. Microbiol. 19, 357-368   DOI   ScienceOn
3 Flett, F., V. Mersinias V, and C.O. Smith. 1997. High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to methyl DNA-restricting streptomycetes. FEMS Microbiol. Lett. 155, 223-229   DOI   ScienceOn
4 Hopwood, D.A., M.J. Bibb, K.F. Chater, T. Kieser, C.J. Burton, H.M. Kieser, D.J. Lydiate, C.P. Smith, J.M. Ward, and H. Schremp. 1985. Genetic Manipulation of Streptomyces. A Laboratory Manual. The John Innes Foundation, Norwich, UK
5 Hopwood, D.A. 1997. Genetic constribution to understanding polyketides synthases. Chem. Rev. 97, 2465-2497   DOI   PUBMED   ScienceOn
6 Ikeda, H. and S. Omura. 1997. Avermectin Biosynthesis. Chem. Rev. 97, 2591-2609   DOI   ScienceOn
7 Lomovskaya, N., L. Fonstein, X. Ruan, D. Stassi, L. Katz, and C. R. Hutchinson. 1997. Gene disruption and replacement in the rapamycin-producing Streptomyces hygroscopicus strain ATCC 29253. Microbiol. 143, 875-883   DOI   ScienceOn
8 Omura, S., H. Ikeda, and H. Tanaka. 1991. Selective production of specific components of Avermectins in Streptomyces avermitilis. J. Antibiotics. 44, 560-563   DOI
9 Hotson, I.K. 1982. The avermectins: A new family of antiparasitic agents. J. S. Afr. Vet. Assoc. 53, 87-90   PUBMED
10 Kartz, L. 1997. Manipulation of modular polyketide synthases. Chem. Rev. 97, 2557-2575   DOI   PUBMED   ScienceOn
11 Egerton, J.R., D.A. Ostlind, L.S. Blair, C.H. Eary, D. Suhayda, S. Cifelli, R.F. Riek, and W.C. Campbell. 1979. Avermectins, new family of potent anthelmintic agents: efficacy of the B1a component. Antimicrob. Agents Chemother. 15, 372-8   DOI   PUBMED   ScienceOn
12 Donadio, S., J.B. McAlpine, P.J. Sheldon, M. Jackson, and L. Katz. 1993. An Erythromycin Analog Produced by Reprogramming of Polyketide Synthesis. Proc. Natl. Acad. Sci. USA 90, 7119- 7123
13 Ikeda, H., T. Nonomiya, M. Usami, T. Ohta, and S. Omura. 1999. Organization of the biosynthetic gene cluste for the polyketide anthelmintic macrolide avermectin in Streptomyces avermitilis. Proc. Natl. Acad. Sci. USA 96, 9509-9514
14 Bierman, M., R. Logan, K. O'Brien, E.T. Seno, R.N. Rao, and B.E. Schoner. 1992. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116, 43-49   DOI   ScienceOn
15 Cortes, J., S.F. Haydock, G.A. Roberts, D.J. Bevitt, and P.F. Leadlay. 1990. Alternative modular polyketide synthase expression controls macrolactone structure. Nature 346, 176-178
16 MacNeil, D.J. 1988. Characterization of a Unique Methyl-Specific Restriction System in Streptomyces avermitilis. J. Bacteriol. 170, 5607-5612   DOI   PUBMED
17 MacNeil, D.J., K.M. Gewain, C.L. Ruby, G. Dezeny, P.H. Gibbons, and T. MacNeil. 1992. Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111, 61-68   DOI   ScienceOn
18 Needleman, P., J. Turk, B.A. Jakschik, A.R. Morrison, and J.B. Lefkowith. 1986. Arachidonic acid metabolism. Annu. Rev. Biochem. 55, 69-102   DOI   ScienceOn
19 Bevitt, D.J., J. Cortes, S.F. Haydock, and P.F. Leadlay. 1992. 6- Deoxyerythronolide-B synthase 2 from Saccharopolyspora erythraea. Cloning of the structural gene, sequence analysis and inferred domain structure of the multifunctional enzyme. Eur. J. Biochem. 204, 39-49   DOI   ScienceOn
20 Cane, D.E., T.-C. Liangm, L.K. Kaplan, M.K. Nallin, M.D. Schulman, O.D. Hensens, A.W. Douglas, and G. Albers-Schonberg. 1983. Biosynthetic origin of the carbon skeleton and oxygen atoms of the avermectins. J. Am. Chem. Soc. 105, 4110-4112   DOI
21 Sambrook, J., E.F. Fritsch, and T. Maniats. 1989. Molecular Cloning: A Laboratory Manual. 2nd ed. Cold spring Harbor Laboratory Press, Cold spring Harbor, New York
22 Burg, R.W., B.M. Miller, E.E. Baker, J. Birnbaum, S.A. Currie, R.L. Hartman, Y.L. Kong, Monaghan, R.L.G. Olson, I. Putter, J.B. Tunac, H. Wallick, E.O. Stapley, R. Oiwa, and S. Omura. 1979. Avermectins, New family of potent anthelmintic agents: Producing organism and fermentation. Antimicrob. Agents. Chemother. 15, 361-367   DOI   PUBMED   ScienceOn
23 Buttner, M.J., K.F. Chater, and M.J. Bibb. 1990. Cloning, disruption, and transcriptional analysis of three RNA polymerase sigma factor genes of Streptomyces coelicolor A3(2). J. Bacteriol. 172, 3367-3378   DOI   PUBMED
24 Campbell, W.C. 1982. Efficacy of the avermectins against filarial parasites. Vet. Res. Commun. 5, 251-62   DOI   ScienceOn
25 MacNeil, D.J., J.L. Occi, K.M. Gewain, T. MacNeil, P.H. Gibbons, C.L. Ruby, and S.J. Danis. 1992. Complex organization of the Streptomyces avermitilis genes encoding the avermectin polyketide synthase. Gene 115, 119-125   DOI   PUBMED   ScienceOn
26 Xue, Y., L. Zhao, H.W. Liu, and D.H. Sherman. 1998. A gene cluster for macrolide antibiotic biosynthesis in Streptomyces venezuelae: Architecture of metabolic diversity. Proc. Natl. Acad. Sci. USA 95, 12111-12116
27 Donadio, S., M.J. Staver, J.B. McAlpine, S.J. Swanson, and L. Katz. 1991. Modular organization of genes required for complex polyketide biosynthesis. Science 252, 675-679   DOI   PUBMED
28 Arena, J.P., K.K. Liu, P.S. Paress, and D.F. Cully. 1991. Avermectin- sensitive chloride currents induced by Caenorhabditis elegans RNA in Xenopus oocytes. Mol. Pharmacol. 40, 368-74   PUBMED