• Title/Summary/Keyword: polycrystalline

Search Result 1,290, Processing Time 0.027 seconds

An Application of Plasticity Model for Ice Deformation Characteristics (수변형 특성에 있어서 소성 모델의 응용)

  • Choe, Gyeong-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.165-165
    • /
    • 1990
  • This study focuses the mechanical deformation response predicted by the plasticity model for polycrystalline ice. To describe various deformation characteristics, ice is idealized as a perfectly plastic material using an asymptotic exponential failure criterion. This criterion is suite for describing materials which exhibit brittle deformation at low hydrostatic pressure and ductile deformation at high hydrostatic pressure. The results are compared to those of continuum damage mechanics model. Plasticity model shows good agreement with damage model and experimental results for high confining pressures even at high strain-rates which is usually considered as a brittle condition under uniaxial compression.

Atmosphere Effects in Low Temperature Pyrolysis of Chemical Solution Derived Pb(Zr, Ti) O3 Films

  • Hwang, Kyu-Seog;Lee, Hyung-Min;Kim, Byung-Hoon
    • The Korean Journal of Ceramics
    • /
    • v.4 no.3
    • /
    • pp.199-203
    • /
    • 1998
  • $Pb(Zr, Ti)O_3$ (Pb:Zr:Ti=1:0.52:0.48) thin films were prepared on single crystal MgO(100) substrates by dipping-pyrolysis process using a solution of constituent metal naphthenates as starting materials. The solution was spin-coated onto substrate and the precursor films were pyrolyzed at $200^{\circ}C$ in air or at $200^{\circ}C$ in argon for 1, 2, 5 and 24h, followed by final heat treatment at $750^{\circ}C$. For all the films, highly (h00)/(00l)-oriented Pb$Pb(Zr, Ti)O_3$ thin films with smooth surfaces and crack-free were obtained, whereas thin film pyrolyzed in air for 24 h exhibited polycrystalline character. According to the pole-figure analysis, epitaxy of the product films was found to depend on pyrolysis atmosphere.

  • PDF

Electrical Properties of ONO Dielectrics Grown on Polycrystalline Silicon (다결정 실리콘 위에 성장한 ONO 절연체의 전기적 특성)

  • 조성천;양광선;박훈수;김봉렬
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.4
    • /
    • pp.28-32
    • /
    • 1992
  • The electrical properties of ONO interpoly dielectrics grown by polycrystalline silicon have been studied. The polysilicon layer deposited as amorphous state kept its surface smoothness even after subsequent heat cycle induced crystallization. Polysilicon was doped with a POCl$_3$ and arsenic ion implantation. Arsenic was implanted in several different doses. The effective barrier heights calculated from F-N plotting method and breakdown fields increased as the polysilicon doping concentration increased. On the other hand they mere degraded when arsenic concentration in polysilicon exceeded 2{\times}10^{20}[cm^{-3}]$. The reliability of dielectric as monitored by TDDB infant fail and breakdown field showed increasing degradation as doping concentration increased

  • PDF

Mechanical Properties of in-situ Doped Polycrystalline 3C-SiC Thin Films by APCVD (APCVD로 in-situ 도핑된 다결정 3C-SiC 박막의 기계적 특성)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.3
    • /
    • pp.235-238
    • /
    • 2009
  • This paper describes the mechanical properties of poly (Polycrystalline) 3C-SiC thin films with $N_2$ in-situ doping. In this work, the poly 3C-SiC film was deposited by APCVD (Atmospheric Pressure Chemical Vapor Deposition) method using single-precursor HMDS (Hexamethyildisilane: $Si_2(CH_3)_6)$ at $1200^{\circ}C$. The mechanical properties of doped poly 3C-SiC thin films were measured by nono-indentation according to the various $N_2$ flow rate. In the case of 0 sccm $N_2$ flow rate, Young's Modulus and hardness were obtained as 285 GPa and 35 GPa, respectively. Young's Modulus and hardness were decreased according to increase of $N_2$ flow rate. The crystallinity and surface roughness was also measured by XRD (X-Ray Diffraction) and AFM (Atomic Force Microscopy), respectively.

Optical, Mechanical and Tribological Properties of $Y_2O_3$ $Er_2O_3$ and $Nd_2O_3$ Doped Polycrystalline Silicon Nitride Ceramics

  • Joshi, Bhupendra;Lee, Su-Wan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.51.1-51.1
    • /
    • 2010
  • $Y_2O_3$ $Er_2O_3$ and $Nd_2O_3$ doped polycrystalline silicon nitride were prepared by hot pressed sintering at $1850^{\circ}C$ and their optical transmittance were investigated in visible and in infrared region. Mechanical and tribological properties were also investigated. Grain growth in silicon nitride was reduced with addition of $Y_2O_3$ and $Nd_2O_3$. 1 wt.% of each rare earth metal were sintered with 3 wt.% MgO, 9wt.% AlN and 87 wt.% of ${\alpha}-Si_3N_4$. Adding these rare earth metal oxides shows good mechanical properties as high strength and toughness and also shows low friction coefficient.

  • PDF

Characteristics of CdS thin film depending on annealing temperature (열처리온도에 따른 CdS박막 특성)

  • 김성구;박계춘;유용택
    • Electrical & Electronic Materials
    • /
    • v.7 no.1
    • /
    • pp.49-56
    • /
    • 1994
  • Polycrystalline CdS thin films were deposited by using EBE method and its crystal structure, surface morphology, electrical and optical properties as a function of annealing temperature were investigated. It was found that optimum growth conditions were substrate temperature annealing temperature 300[.deg. C]. The films were hexagonal structure preferred(002) plane and maximum grain size was 421[.angs.]. As the results, resistivity and optical transmittance of CdS thin films were $8.3{\times}{10^3}$[.ohm.cm] and 89[%] respectively.

  • PDF

A Boundary Diffusion Creep Model for the Plastic Deformation of Grain Boundary Phase of Nanocrystalline Materials (나노재료 입계상의 소성변형에 대한 입계확산크립 모델)

  • 김형섭;오승탁;이재성
    • Transactions of Materials Processing
    • /
    • v.10 no.5
    • /
    • pp.383-388
    • /
    • 2001
  • In describing the plastic deformation behaviour of ultrafine-grained materials, a phase mixture model in which a polycrystalline material is regarded as a mixture of a crystalline phase and a grain boundary phase has been successful. The deformation mechanism for the grain boundary phase, which is necessary for applying the phase mixture model to polycrystalline materials, is modelled as a diffusional flow of matter along the grain boundary. A constitutive equation for the boundary diffusion creep of the boundary phase was proposed, in which the strain rate is proportional to (stress/grain siz $e^{2}$). The upper limit of the stress of the boundary phase was set to equal to the strength to the amorphous phase. The proposed model can explain the strain rate and grain size dependence of the strength of the grain boundary phase. Successful applications of the model compared with published experimental data are described.

  • PDF

Polycrystalline Silicon Thin Film Transistor Fabrication Technology (다결정 실리콘 박막 트랜지스터 제조공정 기술)

  • 이현우;전하응;우상호;김종철;박현섭;오계환
    • Journal of the Korean Vacuum Society
    • /
    • v.1 no.1
    • /
    • pp.212-222
    • /
    • 1992
  • To use polycrystalline Si Thin Film Transistor (poly-Si TFT) in high density SRAM instead of High Load Resistor (HLR), TFT is needed to show good electrical characteristics such as large carrier mobility, low leakage current, high driver current and low subthreshold swing. To satisfy these electrical characteristics, the trap state density must be reduced in the channel poly. Technological issues pertinent to the channel poly fabrication process are investigated and discussed. They are solid phase growth (SPG), Si-ion implantation, laser annealing and hydrogenation. The electrical properties of several CVD oxides used as the gate oxide of TFT are compared. The dependence of the electrical characteristics of TFT on source-drain ion-implantation dose, drain offset length and dopant lateral diffusion are also described.

  • PDF

Efficiency Improvement of Polycrystalline Silicon Solar Cells using a Grain boundary treatment (결정입계 처리에 따른 다결정 실리콘 태양전지의 효율 향상)

  • 김상수;김재문;임동건;김광호;원충연;이준신
    • Electrical & Electronic Materials
    • /
    • v.10 no.10
    • /
    • pp.1034-1040
    • /
    • 1997
  • A solar cell conversion effiency was degraded by grain boundary effect in polycrystalline silicon. Grain boundaries acted as potential barriers as well as recombination centers for the photo-generated carriers. To reduce these effects of the grain boundaries we investigated various influencing factors such as emitter thickness thermal treatment preferential chemical etching of grain boundaries grid design contact metal and top metallization along boundaries. Pretreatment in $N_2$atmosphere and gettering by POCl$_3$and Al were performed to obtain multicrystalline silicon of the reduced defect density. Structural electrical and optical properties of slar cells were characterized before and after each fabrication process. Improved conversion efficiencies of solar cell were obtained by a combination of pretreatment above 90$0^{\circ}C$ emitter layer of 0.43${\mu}{\textrm}{m}$ Al diffusion in to grain boundaries on rear side fine grid finger top Yb metal and buried contact metallization along grain boundaries.

  • PDF

Effects of the Rapid Thermal Annealing on the Electrical and Structural Properties of Polysilicon Films (급속 열처리 공정에 의한 다결정 실리콘 박막의 전기적, 구조적 특성 연구)

  • 김윤태;유형준;전치훈;장원익;김상호
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.9
    • /
    • pp.1060-1067
    • /
    • 1988
  • In this paper, we have investigated the effects of rapid thermal process on the electrical and structural properties of silicon films. It was shown that required times and temperature for the successful activation of dopants (Boron, Phosphorus:5E15atoms/cm\ulcorner were above 1000\ulcorner, 10sec, respectively. The typical resistivities of films deposited below 600\ulcorner were in the range of 1.0 E-3ohm-cm which was 20-30% lower than that of initially polycrystalline silicon depositd above 600\ulcorner. After rapid thermal process at high temperature above 1000\ulcorner, the films did not reveal any change in resistivity due to the dopant segregation, and better electrical conductivity could be obtained by increasing the process time. The grain growth by RTA treatment was more salient in the case of the doped amorphous than that of initially polycrystalline. The surface of the films also preserved the higher structural perfection and surface smoothness.

  • PDF